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ABSTRACT
For many search settings, distributed/replicated search en-
gines deploy a large number of machines to ensure efficient
retrieval. This paper investigates how the power consump-
tion of a replicated search engine can be automatically re-
duced when the system has low contention, without com-
promising its efficiency. We propose a novel self-adapting
model to analyse the trade-off between latency and power
consumption for distributed search engines. When query
volumes are high and there is contention for the resources,
the model automatically increases the necessary number of
active machines in the system to maintain acceptable query
response times. On the other hand, when the load of the sys-
tem is low and the queries can be served easily, the model
is able to reduce the number of active machines, leading
to power savings. The model bases its decisions on exam-
ining the current and historical query loads of the search
engine. Our proposal is formulated as a general dynamic
decision problem, which can be quickly solved by dynamic
programming in response to changing query loads. Thor-
ough experiments are conducted to validate the usefulness
of the proposed adaptive model using historical Web search
traffic submitted to a commercial search engine. Our results
show that our proposed self-adapting model can achieve an
energy saving of 33% while only degrading mean query com-
pletion time by 10 ms compared to a baseline that provisions
replicas based on a previous day’s traffic.

Categories & Subject Descriptors: H.3.3 [Information
Storage & Retrieval]: Information Search & Retrieval

Keywords: Search Engines; Power Consumption.

1. INTRODUCTION
Commercial web search engines are expected to process

queries under tight response time constraints and be able
to operate under heavy query traffic loads. Operating under
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these conditions requires building a very large infrastructure
involving thousands of computers, with corresponding con-
tinuous operating costs. In particular, electricity costs (in-
cluding power and cooling) form an important part of the
operational costs of search engine companies [14]. Indeed,
in 2011, Google’s overall power consumption was reported1

to be 2.68 million MWh.
The user query volume typically received by a Web search

engine varies through the course of the day [27]. In order
to guarantee that each query is processed with sub-second
response times, the computing/communication infrastruc-
ture has to support worst-case query volume, which typ-
ically reaches its maximum during the day time. Hence,
the typical approach taken by Web search engines is to de-
ploy a distributed search architecture relying on a very large
data centre to deal with the worst-case query volumes [13].
The main goal of this high-level approach is to maximise
the query throughput of a search engine, providing users
with effective query results in a timely manner. Supporting
worst-case query volumes in large data centres has the obvi-
ous drawback that the power consumption/electricity costs
are not taken into account, resulting in a potential waste
of power and money when the query volume is low. In-
stead, it is possible to dynamically adapt the behaviour of
the search engine – according to the variations of the query
load – while providing acceptable query latencies and min-
imising the number of machines used to process the queries.

We argue that a tradeoff can be enforced between the
machines devoted to processing queries and query process-
ing deadlines, and that this tradeoff can be adapted dur-
ing the operational cycle of a Web search engine, in order
to minimise the number of machines processing the queries
while ensuring acceptable latencies. Moreover, we contend
that this tradeoff can be adapted dynamically to changing
query volumes in very short times. To attain this, we pro-
pose a mathematical model of a replicated search engine
with a query broker and many independent query proces-
sors, each managing a replica of the index. This model
permits the number of query processors to be dynamically
changed according to the query arrivals and proposed la-
tency and power consumption cost functions. By estimat-
ing the arrival times and processing requirements of future
queries, we derive self-adapting mechanisms for the search
engine model that can reduce power consumption without
negatively impacting efficiency, by means of dynamic opti-
misation schemes [2]. Moreover, we provide thorough ex-

1Google Green: http://www.google.com/green/.



periments using 1 million queries submitted to a real Web
search engine over the course of 2 days, to demonstrate the
power savings that can be obtained without marked impact
on the efficiency of the search engine.

The main contributions of this paper are the following:

• We propose a self-adapting model for replicated search
systems that establishes a trade-off between latency
and power consumption in terms of the number of
replicated query servers required as query load varies
throughout the day.

• We show how this model can be instantiated for differ-
ent methods of forecasting the query traffic at a given
time – based on current and historical query loads –
as well as with a variety of latency functions.

• We thoroughly demonstrate experimentally how the
proposed model can reduce the power consumption of a
search engine by 33% with little decrease in the overall
efficiency of the search engine.

This paper is structured as follows: Section 2 discusses
the existing literature on distributed search and green ef-
forts in information technology. In Section 3, we introduce
our model, by describing the dynamic system and the gen-
eral cost function, while Section 4 presents the deterministic
approach that considers the previous and also the current
state of the system for predicting query traffic. Section 5
proposes power and latency cost functions. In Section 6, we
concretely state the research questions that we investigate,
as well as detailing the baselines and experimental setup.
Section 7 reports our experimental results, with concluding
remarks following in Section 8.

2. BACKGROUND
As well as effectively answering the users’ information

needs, a search engine must be efficient, as users are not
willing to wait long for queries to be answered [26]. For
large settings, the efficient answering of queries typically en-
compasses the distribution of the search engine index across
multiple machines. As our work is concerned with the anal-
ysis of distributed search engines, and their power consump-
tion, in the remainder of this section we provide the neces-
sary background on distributed search engine architectures
(Section 2.1) and on previous work on reducing power con-
sumption within information technology (IT) (Section 2.2).

2.1 Distributed/Replicated Search
Increasing the parallelism of a search engine through dis-

tributed architectures offers a route to increased per-request
efficiency without loss of effectiveness. In such document-
partitioned architectures, a query server stores the index
shard for a subset of the documents in the corpus. When a
query arrives at a query broker, it broadcasts the query to
all shards, in order to later collect and merge the results and
produce the final top K retrieved set for presentation to the
user [1]. To ensure high throughput rates, shards are often
replicated, so that one of multiple query servers can pro-
vide the results for a single shard [4]. Indeed, with multiple
replicas of the same shard, more queries can be processed in
parallel on identical shard copies, thus reducing the waiting
time of incoming queries, as well as providing fault tolerance
properties. Without loss, we focus on a single broker, single-
shard environment with multiple replicas on different query

Query
Broker

1) Incoming queries

Replica 1     
q1processing      q2processing      

Replica 2     
qMprocessing      

Replica M     

qM+1qM+2

2) FIFO queue

3) Scheduling to the 
         first available replica

Figure 1: Our reference architecture.

server machines. Indeed, as the replicated query servers al-
located to a single shard represent independent partitions of
the search engine’s index, the techniques proposed in this pa-
per could easily be applied for multiple shard environments,
by independent application on each shard individually.

Our reference architecture assumes a single-shard search
engine implemented by a query broker and M independent
replicas that manage a copy of the index (Fig. 1). Queries
are received by the broker and are queued up in a buffer.
While complex queue re-ordering strategies can benefit over-
all response times [9, 20], in our architecture, the query pro-
cessing nodes serve from the front of the queue: at any given
time if the search engine has less than M queries, some pro-
cessing nodes are idle, while if the search engine has more
than M queries, some queries are queued in the buffer.

2.2 Green IT
In recent years, the consciousness of environmental prob-

lems tied to Green-House Gases has increased. In 2007,
analyst Gartner estimated that Information and Commu-
nication Technology is responsible for 2% of the total emis-
sions [11]. Much research effort has been dedicated to achieve
power savings for data centres or Internet servers [8, 17, 19,
21, 30] taking into account different factors such as the de-
vices’ power consumption and/or cooling systems. More-
over, large IT companies such as Microsoft2 and Google3

are making efforts in reducing their carbon emissions, while
also publishing their carbon footprints and goals.

Some directions on how to proceed in order to save power
consumption in data centres are given in [19], where Lin et
al. showed that the most effective and aggressive power sav-
ing comes from turning off components that are not used,
such as CPU, disk, and memory, which consume substan-
tial power when they are turned on, even with no active
workload. Nevertheless, they remark on several challenges
regarding this technique: the workload scheduling of the re-
maining active systems to preserve performance and the cost
of waking up a sleeping component.

Many of the afore-mentioned works are focused on achiev-
ing power savings in data centres for general Internet ser-
vices (e.g. [19, 21]). However, few works have addressed this
problem within search engines, where user queries equate to
(short-lived) jobs. Chowdhury [5] recently introduced the
term Green IR, that maps this concern into the information
retrieval field. His roadmap for improving environmental
impact of information retrieval systems addresses the power
efficiency of end-user devices as well as within the search
engine itself. Within his roadmap, our work is clearly fo-
cused on the intra-data centre efficiency of the search engine.

2http://www.microsoft.com/environment/
3http://www.google.com/green/



In contrast, the work of [16] addressed power efficiency at
the inter-data centre level, by distributing query volume be-
tween geographically distant data centres based on workload
and electricity prices. Recently, Sazoglu et al. [25] propose
a novel metric for result caching that considers the financial
cost of a cache miss. Nevertheless, to the best of our knowl-
edge, no previous work has presented an intra-data centre
model that turns the servers on or off depending on the in-
coming query traffic needs. Indeed, our model, proposed
in the next section, can examine the historical and current
query traffic patterns to predict the number of query server
replicas now needed, and obtain power savings within a sin-
gle data centre by eliminating query servers that are not
currently needed.

3. DYNAMIC OPTIMISATION MODEL
We consider a replicated search engine processing user

queries, as explained above with reference to Figure 1. Each
query submitted to the search engine experiences a comple-
tion time defined as the sum of its waiting time (the time
that the query has spent enqueued), its processing time (the
time spent processing the query by a query processor) and
any network delays between the broker and the correspond-
ing replica. Assuming identical query processors, the pro-
cessing time of a query is independent from the node actually
processing the query: the same query will be processed in
the same amount of time on each node.

We consider a daily-based operational cycle of the search
engine, in that we analyse the behaviour of the search engine
during a single day. Periodically during the day, we observe
the state of the search engine and thus decide how to change
it, with the objective of minimising a certain cost, i.e., an un-
desirable behaviour. In our scenario, this behaviour is rep-
resented by the unnecessary usage of machines that are not
required to service the query load with acceptable timeliness.
In doing so, we must take into account that the outcome of
each decision cannot be fully predicted, due to some random
unknown parameters – such as the number of queries that
will be received. Moreover, each decision cannot be taken in
isolation, since we want to balance lowering the present cost
with potentially higher future costs – for instance, turning
off currently unused machines that might be needed shortly.
To achieve these aims, we model the search engine as an
optimal decision problem of a discrete dynamic system over
a finite number of stages [2]. Computing systems have been
previously modelled as dynamic systems in order to lever-
age automatic control theory to address the dynamics of re-
source management [12], such as email server [23] and web
servers [6]. However, this work represents the first instan-
tiation of a dynamic decision problem within search engine
power/latency modelling.

In the remainder of this section, we provide a short intro-
duction to the general dynamic decision problem [2] (Sec-
tion 3.1), a dynamic model of a replicated search engine with
multiple query processors (Section 3.2), a discussion on the
cost function for our dynamic model (Section 3.3), and a
summary of the resulting decision problem (Section 3.4).

3.1 General Dynamic Decision Problem
A dynamic decision problem model must be composed by:

(1) an underlying discrete-time dynamic system and (2) a
cost function that is additive over time [2]. In the following,
we introduce the notation necessary to describe a general
decision problem model, which we later instantiate for our

Table 1: Notation used within our model.

Symbol Explanation
N number of time slots (per day)
Ts length of a time slot (in secs)
M number of available machines
xk queued queries at the beginning of time slot k
uk processing nodes during time slot k
wk incoming queries during time slot k
yk processed queries at the end of time slot k
w̄k estimated incoming queries during time slot k
vk mean query processing time during time slot k
v̄k estimated mean average query processing time during time slot k
fk(·) generic state update function
gk(·) generic cost function
Pk(·) power cost function
Lk(·) latency cost function
hk(·) query processing function

proposed search engine model. All notation used in our in-
stantiation for a search engine problem model is summarised
in Table 1. Firstly, we assume that time is slotted and in-
dexed by k = 0, 1, 2, . . . , N . Time slots are sampled every
Ts seconds. The dynamic system has the form:

xk+1 = fk(xk, uk, wk) k = 0, 1, . . . , N − 1 (1)

where k indexes discrete time, xk represents the state of the
system that is relevant for its future operation, uk is the de-
cision variable to be selected at time k and wk is a random
parameter. In general, we deal with a finite time horizon,
i.e., we observe and optimise the system during a fixed num-
ber of time slots, indexed from 0 to N – for instance, over a
24 hour period. The random parameter (or noise, or distur-
bance, or exogenous input) wk is characterised by a probabil-
ity distribution that may depend explicitly on xk and uk but
not on the values of prior disturbances w0, . . . , wk−1. Given
an initial state x0 and a sequence of decisions u0, . . . , uN−1,
the states xk and the disturbances wk are random variables
with distributions defined through Equation (1).

The cost function defines the expected cost of the decision
at time k, and is additive in the sense that the cost incurred
at k, denoted by gk(xk, uk, wk), accumulates over time. Note
that gk is a random variable, since it depends on xk and wk.
Hence the expected total cost J(x0) is:

J(x0) = E

[
gN (xN ) +

N−1∑
k=0

gk
(
xk, uk, wk

)]
(2)

where the expectation is taken over the random variables xk
and wk and gN (xN ) is a terminal cost incurred at the end of
the process, depending on the final state. Hence, an optimal
decision sequence u∗

0, . . . , u
∗
N−1 is the decision sequence that

minimises the cost J(x0).

3.2 Search Engine Dynamic Model
Following the above formulation of a general dynamic de-

cision problem, we now instantiate a dynamic decision model
for a search engine. In each time slot k, depending on the
number of pending queries in the buffer, the search engine
allocates a number of processing nodes among the M avail-
able. Increasing the number of processing nodes decreases
the overall waiting time for the queries in the buffer but in-
creases the service cost and power consumption associated
with the system.

At the beginning of each time slot, a decision must be
taken regarding the number of processing nodes to be used
in that slot. Decisions cannot be viewed in isolation since
we want to balance two conflicting goals: minimising the



power consumption of the search engine, and maximising
the search engine’s efficiency. We denote by:

• xk: the number of queries waiting to be processed (i.e.,
currently enqueued) at the start of the kth time slot.

• uk: the number of active processing nodes at the start
of the kth time slot.

• yk: the number of queries processed by the search en-
gine during the kth time slot (with a given probability
distribution).

• wk: the number of queries arriving to the search en-
gine during the kth time slot (with a given probability
distribution).

We assume that any incoming query is queued, and that if
there are waiting queries, any processing node that finishes
to process a query will immediately start to process another
query. Thus, the number of queries waiting to be processed
evolves according to the following discrete-time equation:

xk+1 = xk − yk + wk (3)

The dynamic equation (3) does not explicitly depend on
the number of active processing nodes uk. However, the
number of queries processed by the search engine during the
kth time slot yk depends explicitly on uk, according to the
following general equation:

yk = hk(xk, uk, vk) (4)

This models the fact that, in a given time slot, the number of
processed queries depends on three quantities: the number
of queries waiting to be processed xk, the number of pro-
cessing nodes uk, and a random component vk modelling
the mean service time of the queries. To summarise, the
complete model for the search engine under examination is:

xk+1 = xk − hk(xk, uk, vk) + wk (5)

where we leave to later in Section 4 the specification of the
query processing function hk(xk, uk, vk), which defines how
many queries of xk can be processed by uk machines with a
given service time pattern of vk.

3.3 Search Engine Cost Function
A public software service such as a search engine has two

main stakeholders: the service provider and the service user.
In general, the service provider aims to maximise the rev-
enue from the service, increasing the income and reducing
its operating expenditure. One of the main costs of a run-
ning service is the expenditure on power required to run the
machines hosting the service. From the point of view of
the user, a search service is desired to be efficient (timely),
i.e., the latency between the submission of a query and the
display of the first search results should be minimised.

Clearly, the operating cost of a search infrastructure de-
pends on the number of machines operating the service, and
the final revenue depends on the number of satisfied users,
i.e., how many users receive their search results with accept-
able latency. Indeed, search engines users have less tolerance
for slower search engines [26], and may abandon their search
request [18] if the search engine takes too long to respond.
Such abandonment can lead to the loss of users to other
search services, leading to a loss of potential revenue from
these users.

Given that the number of queries submitted to a search
engine varies during the day [27], the number of processing

nodes can be varied according to the demand. At the start
of each time slot, a decision regarding the number of process-
ing nodes to be used must be taken. Decisions need to bal-
ance two conflicting goals: minimise the search engine power
consumption and maximise the search engine efficiency (by
reducing latency). Hence, we have two types of costs that
should both be considered:

1. Power cost Pk(xk, uk, vk, wk), increasing in the number
of processing nodes used;

2. Latency cost Lk(xk, uk, vk, wk), increasing in the num-
ber of queries waiting to be processed and decreasing
in the number of processing nodes used.

As the latency costs increase, the model aims to minimise
the overall cost by emptying the query queue faster. On
the other hand, as the power costs increase, the system will
attempt to trade higher latencies for lower power. In or-
der to model this power-latency tradeoff, we propose cost
combinations of the following type:

gk(·) = λPk(·) + (1− λ)Lk(·) (6)

for various values of λ ∈ [0, 1). For λ = 0, the cost function
represented by Equation (6) ignores any power cost, and
leads to the maximum number of available processing nodes
being used in every time slot, as this achieves the minimum
possible queueing delay. If λ = 1 is allowed, the cost function
would ignore any latency cost, leading to the limit case of
no processing nodes being used for processing, thereby max-
imising power savings but leading to infinite waiting times.
Varying λ in [0, 1), we can achieve any average query latency
from infinite to the minimum possible traded off against the
corresponding power consumption of the search system. We
note that both cost functions assume values in the same
range. Without loss of generality, later in Section 5, we de-
vise particular cost functions ranging in the [0,1] interval,
where 0 means no cost and 1 means maximum cost.

3.4 Latency/Power Decision Problem
We now formulate the general dynamic decision problem

by adapting Equations (1) & (2) to our search engine and
cost models:

minimise
uk

E

[
N−1∑
k=0

λPk(xk, uk, vk, wk)+

(1− λ)Lk(xk, uk, vk, wk)

]
subject to xk+1 = xk − hk(xk, uk, vk) + wk,

k = 0, 1, . . . , N − 1

(7)

As described above, λ is an exploratory parameter that
must be fixed at the beginning, while wk and vk are random
variables describing the number of incoming and processed
queries at the kth time slot respectively. The state variables
xk are computed through N instances of Equation (5), de-
pending on these two random variables and the query pro-
cessing functions hk(·). Given these dependencies, the state
variables are random variables as well, hence the expecta-
tion in the cost function must be computed over these three
sets of random variables, in a stochastic manner. The query
processing functions hk(·) will be defined in the next sec-
tion, where we describe some approximations that allow the
stochastic decision problem (7) to be sub-optimally solved
in a deterministic manner.



4. DETERMINISTIC APPROXIMATION
Problems like (7) cannot typically be solved analytically,

and their solution algorithms are computationally very in-
tensive [2]. For these reasons, these problems, where the
exact value of all variables are unknown deterministically,
are solved sub-optimally in practice. In order to deal with
the stochastic decision problem (7), we propose to solve a
suboptimal scheme that consists of computing, at each stage,
a decision that would be optimal if the uncertain quantities
were fixed at some typical values. In doing so, we replace
the stochastic nature of the decision problem with a simpler
deterministic version at each stage and then we solve the
deterministic problem. Within this section we discuss:

1. how to estimate the ‘typical’ value of the random vari-
ables, which we denote by w̄k and v̄k, representing the
estimated number of queries arriving during the kth
time slot and the estimated mean service time during
the kth time slot (Section 4.1);

2. how to derive a deterministic approximation for prob-
lem (7) with query processing functions hk(·) depend-
ing on our estimations (Section 4.2);

3. how to solve the deterministic problem using dynamic
programming, if we know all the estimates of the ran-
dom variables for the whole day, and how to solve the
deterministic problem with simple subsequent steps, if
we know the estimates of the random variables for the
next time slot only (Section 4.3).

4.1 Random variables estimation
In order to compute the estimated values of the random

variables wk and vk, we adopt the following estimation schemes,
based on historical data.

For the service times of queries, the typical assumption is
that these are independent and identically distributed ran-
dom variables [3]. However, we assume that the service times
exhibit a seasonal trend among days, hence the mean ser-
vice time of the queries in the k-th time slot is equal to the
mean service time of queries in the same time slot of a pre-
vious day, i.e., v̄k = vk−SN , where S defines the step, i.e.,
the number of previous days, and N is the total number of
time slots in a day. For instance, S = 1 means that v̄k is
estimated using data from the previous day, while S = 7
means that v̄k is estimated using data from the same day in
the previous week.

For the number of queries arriving during the kth time
slot, we will assume two different estimation schemes:

• In the seasonal estimator, we estimate the number of
incoming queries with the actual number of incoming
queries in the same time slot of a previous day, i.e.:

w̄k = wk−SN

• In the seasonal estimator with drift, the previous day
value is adjusted with the current trend of arrivals [24]
experienced in the last two time slots, such that:

w̄k = wk−SN + (wk−1 − wk−2)

While the seasonal estimator is a viable solution for days ex-
hibiting the same query submission and execution patterns
(e.g., two subsequent weekdays or the same day in two subse-
quent weeks), the seasonal estimator with drift takes into ac-
count potential and unpredictable changes in query volume

stage x0 stage x1 stage x2 stage xN

g0(x0, 1)

g0(x0, 2)

0

0

x0

g1(f0(x0, 1), 1)

g1(f0(x0, 2), 1)

g1(f0(x0, 1), 2)

g1(f0(x0, 2), 2)

Figure 2: Transition graph for a deterministic problem with
2 machines.

patterns, such as reduced query volumes during holidays or
increased query volumes during major events (e.g., disasters,
breaking news, or sport events). However, for this estimator,
the value of w̄k is known for only the next time slot ahead.

4.2 Deterministic Problem Formulation
Given the mean query service time vk, it is straightfor-

ward to model the processing of queries in our search engine
model. If a single node can process Ts/vk queries in the Ts

seconds duration of the kth time slot, then uk identical pro-
cessing nodes can serve uk · Ts/vk queries during the same
slot, resulting in the following expression for hk:

hk(·) = uk · Ts/vk (8)

Since we use the estimated mean service time v̄k instead
of the actual mean service time vk, the approximation of
the stochastic decision problem (7) with the random vari-
ables’ estimated values leads to the following deterministic
problem formulation:

minimise
uk

N−1∑
k=0

λPk(xk, uk, v̄k, w̄k)+

(1− λ)Lk(xk, uk, v̄k, w̄k)

subject to xk+1 = max{0, xk − uk · Ts/v̄k + w̄k}
k = 0, 1, . . . , N − 1

(9)

where the max{·} function avoids to process more queries
than the number of queries available to process. In con-
trast to problem (7), problem (9) is deterministic as there is
no longer any probability distributions associated to vk and
wk (and hence xk). Such deterministic formulation can be
tractably solved [2], as described next.

4.3 Deterministic Problem Solutions
Consider the deterministic problem formulation defined

in Equation (9) where each state xk can assume a finite set
of values. Then, at any state xk, a decision uk can be as-
sociated with a transition from state xk to state fk(xk, uk) =
xk−uk·Ts/v̄k+w̄k at a cost gk(xk, uk) = λPk(xk, uk, v̄k, w̄k)+
(1 − λ)Lk(xk, uk, v̄k, w̄k). As illustrated in Figure 2, the
deterministic problem can be equivalently represented by
a graph, where the arcs correspond to transitions between
states at successive stages and each arc has an associated
cost corresponding to gk(·). Decision sequences correspond
to paths across the graph, originating at the initial state
(node at stage 0, where x0 = 0), and terminating at a final
node linked to all terminal states (nodes at stage N − 1)
with no associated transition cost or, alternatively, with a
cost proportional to the number of remaining unprocessed
queries. If we view the cost of an arc as its length, we see
that the deterministic problem of Equation (9) is equivalent
to finding a minimum length path from the initial node (at



stage x0) to the artificial terminal node with no transition
costs of the graph.

If the service times and the number of arriving queries are
estimated using only historical data (e.g. based on a previous
day, the seasonal estimator), then the transition costs of the
whole graph for the current day can be computed a priori.
Hence, it is possible to use dynamic programming to solve
the general shortest path problem [2], but also algorithms
specifically designed for the shortest path problem solution,
such as the Dijkstra algorithm [7]. We denote this solution
algorithm as LongTerm.

On the other hand, if we estimate the number of arriving
queries with the seasonal drift approach, the estimates of
the number of queries wk depend not just on the historical
data, but also on the current load being experienced by the
search engine. Hence, it is not possible to compute all the
transition costs in the graph at the start of the day [2]. In-
stead, at each step we truncate the estimation horizon (i.e.
how ahead the costs are calculated) to the next step only
and resort to a one step limited lookahead strategy, where,
at each stage, we select the next stage reachable with mini-
mum cost from current stage4. We will denote this solution
algorithm with ShortTerm. Moreover, as discussed in Sec-
tion 4.1, we expect ShortTerm to improve LongTerm, as
it considers the query volume being currently experienced
by the search engine in addition to the volume experienced
on a previous day.

5. COST FUNCTIONS
The previous two sections define our model for balancing

power/latency tradeoff, as well as a deterministic approx-
imation. In this section, we study two cost functions to
analytically express the power/latency tradeoff as the linear
combination expressed in Equation (6). These cost functions
allow us to model the benefits/drawback of using a variable
number of machines.

5.1 Power Cost Function
The power cost function Pk(xk, uk, v̄k, w̄k) represents the

electric power consumption of the whole search engine and
it is directly proportional to the energy costs of operating
the search engine. Firstly, we discuss the power usage of a
single processing node. We distinguish between three states
that a node can be in:

1. ON. The node is fully operational and busy processing
a query. The node consumes power at a rate of Pon.

2. STANDBY. The node is available, but is currently
sleeping. The node consumes power at a rate of Pstandby.

3. OFF. The node is off, and it consumes no power.

Switching a node between two states is associated to a switch-
ing cost. The switching cost typically consists of two com-
ponents: a time component and a power component. The
time component depends on node characteristics and the
search engine implementation, while the power component
depends on the power consumed by the node during setup
time (typically coinciding with Pon). While the switching
time ON ↔ STANDBY is almost instantaneous, the time
required to switch between ON and OFF and vice-versa is
not negligible: for most data centres [10], this switching time

4We leave an examination of strategies with larger looka-
heads to future work.

can reach 200 seconds. This setup time can negatively im-
pact on the latency of the queries to be processed by the
node, and must be avoided. As the modelling of switching
times is not considered in our cost functions, we limit our
machine operational states to ON and STANDBY.

Given these costs, we assume that a fully operational node
is consuming Pon Watts per Ts seconds, while a STANDBY
node is not turned off but consuming Pstandby Watts per Ts

seconds. So, at a given time slot k, the total energy con-
sumed by a search engine with uk active processing nodes
out of a possible M is:

PonTsuk + PstandbyTs(M − uk)

Please note that this energy consumption is an upper bound
approximation of the actual power costs, because we are im-
plicitly assuming that all active node will always be process-
ing queries. By normalising this quantity by the maximum
consumable energy for M machines, we obtain the following
expression for the power cost function Pk(·):

Pk(·) = P (uk) =
1

MPon

[
Ponuk + Pstandby(M − uk)

]
(10)

Note that the power cost function does not depend on k, xk,
v̄k or w̄k, and that it varies between Pstandby/Pon and 1.

5.2 Latency Cost Function
The latency cost function Lk(xk, uk, v̄k, w̄k) represents the

cost incurred when the time required to process queries in-
creases. In order to provide a simple analytic expression for
this cost, consider the following situation. At the beginning
of time slot k, we have xk queued queries, waiting to be pro-
cessed by uk nodes with an average service time per node
of v̄k seconds. During the k-th time slot, we receive w̄k new
queries to process. We want to compute the average latency
of xk + w̄k queries. The first batch of uk queries can be pro-
cessed by a single replica after v̄k seconds, the second batch
of uk queries is processed after 2v̄k seconds, and so on. We
have a total of B = (xk + w̄k)/uk batches of queries, so the
last batch of at most uk queries is processed after Bv̄k sec-
onds. Hence, at a given time slot k, the query completion
time Tk of xk+w̄k queries by uk replicas can be computed by:

Tk =
xk + w̄k

uk
v̄k (11)

While this definition of completion time assumes that queries
arrive such that the query processors are always busy during
the time slot, it behaves as expected: Tk decreases when the
number of processing nodes increases, and increases when
the number of queued queries, the number of arriving queries
or the average query processing time increases.
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Figure 3: Illustration of latency cost function shapes.



To normalise this completion time in the [0,1] interval, we
adapt the latency metrics in [29]:

L1
k(·) = 1− exp(αTk) (12)

L2
k(·) =

{
0 if Tk ≤ Ts

1 otherwise
(13)

L3
k(·) =

{
0 if Tk ≤ Ts

1− exp(α(Tk − Ts)) otherwise
(14)

While all metrics consider processing of all queries in the
time slot, in contrast to L1

k, L2
k and L3

k model a certain toler-
ance level for query execution time, based on the processing
of all queries in the time slot (Ts). Figure 3 illustrates each
of the latency cost functions. The exponential parameter
α > 0 controls how rapidly the latency cost increases as a
function of query completion time.

6. EXPERIMENTAL SETUP
In the next section, we experimentally investigate to de-

termine the potential of our proposed model for reducing the
power consumption of a search engine without negatively im-
pacting on its efficiency. In particular, three research ques-
tions are addressed, as follows:

1. Do our proposed self-adaptive models using seasonal
data and current query traffic achieve comparable la-
tency values compared to reasonable baselines while
achieving savings in power consumption?

2. How do power and efficiency properties of LongTerm
and ShortTerm differ?

3. How should the latency cost function be modelled within
our self-adaptive models?

In the remainder of this section, we define the experimen-
tal setup to address these research questions, covering the
search engine (Section 6.1), evaluation measures (Section 6.2),
baselines (Section 6.3), and parameter settings (Section 6.4).

6.1 Search Engine, Documents & Queries
To evaluate the proposed model, we determine the pro-

cessing times for real user queries submitted to a search en-
gine platform. In particular, we index 50M Web documents
from the TREC ClueWeb09 corpus (category B) using the
Terrier IR platform5 [22] – ClueWeb09 cat. B is intended
to reflect the first tier of a commercial Web search engine
index. While indexing the corpus, standard stopwords are
removed and Porter stemming applied.

For queries, we use two days of queries (approx one mil-
lion queries) from the MSN 2006 query log6. In particular,
we use queries from 19th May 2006 as testing and - by set-
ting S = 11 - use the historical queries from 8th May 2006
as training data for estimating the random variables. Fig-
ure 4 presents the number of queries over the course of each
day. During retrieval, we use the Wand dynamic pruning
technique applying BM25 to rank 1000 documents for each
query, recording the processing time of the query by a single
replica. All efficiency experiments are made with a quad-
core Intel Xeon 2.4GHz, with 8GB RAM, with inverted in-
dexes are stored on a 160GB SATA drive.

5http://terrier.org/
6http://research.microsoft.com/en-us/um/people/
nickcr/wscd09/
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Figure 4: Number of queries arriving per 15 minute slot for
both days.

6.2 Evaluation Measures
As our work concerns balancing the tradeoff between search

engine efficiency and power consumption, we measure both
aspects within our work. In particular, we measure the mean
and 90th percentile response time for queries as the config-
uration of the search engine is varied across the evaluation
period (denoted ACT and 90%CT, respectively). Response
times are measured in milliseconds (ms).

Concurrently, we measure the power usage of the search
engine for the same period based on the number of machines
active at any point (denoted E and measured in KWh), as
well as the maximum number of machines that were active
(denoted Max Mch). We note that with some configura-
tions of the search engine when there are insufficient repli-
cas available, the search engine will become backlogged with
excessive number of queued queries. To prevent any skew in
the results, we drop queries that are not answered within 5
seconds, thereby returning an error page to the user of that
query. Clearly this is an undesirable scenario, and hence, we
count the number of unanswered queries (denoted %UQ).

To summarise, we consider as a success when, compared
to a baseline approach (described in the next section), the
maximum number of active query server replicas and result-
ing power consumption of the search engine can be reduced,
without marked negative impact upon the experience of the
search engine users, as portrayed by increased response times
and higher rates of unanswered queries.

6.3 Baselines
To evaluate our proposed model, we define two reasonable

baselines for determining uk for i = 0, . . . , N − 1, in other
words for defining how many machines are active at any slot.

The first baseline – which we call Näıve – is motivated by
the provisioning of search engines to cope with worst-case
query volume [13], and consists in choosing the maximum
numberM of machines in each time slot, ignoring completely
any power consumption. In this case, we assume maximum
power cost, to reflect the fact that the M machines are will
continue to be allocated queries, e.g. by round-robin.

The second baseline, that we call Threshold, consists in
fixing a time threshold for the query completion times, and
using the previous day average arrival times, the average
processing times and the number of queued queries in the
same time slot in Equation (11). In doing this, we can derive
the decisions uk for i = 0, . . . , N − 1 that will be applied to
the current day. In this case, we assume that each of the
selected uk processing nodes for a specific time slot consume
maximum power, as they may be allocated queries in a round
robin basis, even if the current query load is lower than



the previous day query load. On the other hand, the other
M−uk nodes in a STANDBY state consume Pstandby power
each. Then, if we consider the definition of latency as per
Equation (11), and fix the time threshold to T ∗, we can
compute uk as:

uk =
w̄k

T ∗ v̄k

where we assume that in each time slot the choice of uk

was able to process all the incoming queries, so that xk = 0.
The value of T ∗ is determined by the length of the time slot,
as we want all the queries of a slot to be processed before
proceeding to the next slot.

Of these two baselines, it is clear that the power con-
sumption of Threshold will be less than Näıve, as Threshold
affords the opportunity to save power for nodes that are not
expected to be required. However, compared to LongTerm,
Threshold may disable nodes that would soon be required,
as it cannot examine the impact of a power decision across
the remainder of the day.

6.4 Parameter Settings
To instantiate our model, we invoke various parameter

settings as follows. Firstly, to calculate the power consump-
tion of a replicated processing node, we use the energy rat-
ings from the EU Energy Star programme [28] for a small
server as follows: Pon = 62W , Pstandby = 2W , following
the reported use of commodity-sized servers within com-
mercial search engines [13]. Within latency cost functions
(Equations (12)-(14)), we follow Wang et al. [29] and use
α = −0.01 for the ClueWeb09 cat. B corpus. For slot du-
ration, we set Ts = 15 minutes, reflecting an interval that
identifies general changing trends in query volumes that the
model can quickly respond to, rather than random fluctu-
ations that might be detected by shorter slot durations.
Finally, as queries arrive on average at 15 per second, we
use M = 15, 20 as the number of replica query proces-
sors. The remaining parameter of our model, namely the
power/latency tradeoff λ are experimental variables that we
vary within the next section.

7. RESULTS
In this section, we aim to determine if our proposed self-

adapting model allows the system to markedly reduce power
consumption with latency comparable to that achieved by
the baselines. In particular, Section 7.1 firstly determines
the efficiency and power properties of our two baselines. Sec-
tion 7.2 addresses our first and second research questions,
by comparing the LongTerm and ShortTerm approaches
with the baselines and with each other. Finally, in Sec-
tion 7.3, we address our final research question concerning
the choice of latency cost function within the model.

7.1 Baselines
The top part of Table 2 reports, for M = 15, 20 repli-

cas, the various evaluation measures achieved by the two
baselines in this paper, namely Näıve, which keeps the max-
imal number of replicas active, and Threshold, which actives
the number of replicas that would have sustained the traffic
of the previous day. Within the table, we report efficiency
measures (average and 90th percentile response times, mea-
sured in milliseconds), the number of unanswered queries,
the peak number of machines used, and the total energy
consumption over the course of the day (KWh). The time
slot size is maintained at Ts = 15 minutes.

Analysing the response times for the baselines within Ta-
ble 2, we note that mean response times around 850ms are
achievable by both approaches. Moreover, while the Thresh-
old approach can reduce the energy consumption compared
to Näıve by putting machines into standby mode (by 47% for
M = 15 and 57% for M = 20), this comes at the expense of
marginally increased response times (approx. 6ms). To sum-
marise, we find that, as expected the Threshold approach re-
sults in markedly decreased energy consumption compared
to Näıve, with little marked impact on response times.

7.2 Self-adaptive Power/Latency Models
The bottom two parts of Table 2 report the evaluation

measures for the LongTerm and ShortTerm approaches.
For both approaches and both M = 15, 20 replicas, we vary
the power/ latency tradeoff parameter λ, to determine its
impact on both efficiency and energy consumption. In this
section, the L1 latency cost function (Equation (12)) is ap-
plied.

Firstly, we discuss the LongTerm approach, which esti-
mates the expected number of queries solely based on the
query volume in the same time slot of the previous day.
Overall, for some values of λ, this approach provides com-
pletion times generally comparable with the baselines, i.e.
less than 900ms. However, such values can be obtained with
marked reductions in energy use. For instance, compared to
Threshold, the setting of M = 20, λ = 0.5 produces a 5%
increase in mean completion times and 4% in 90th percentile
completion time; this is achieved with a 42% reduction in
consumed energy, and a peak usage of 7 replicas – down
from 19. For M = 15, λ = 0.5, the query load can be ser-
viced with only 6.3KWh of energy use and only 6 replicas,
at the cost of 14% increase in mean completion time com-
pared to Threshold, and a small increase in the number of
unanswered queries.

Such results demonstrate the promise of the proposed
LongTerm approach: given enough replicas to service peak
demands (M = 20), it can achieve marked energy savings
compared to the Threshold baseline. Indeed, LongTerm
has the advantage that by being able to derive the cost of
a decision until the end of the day, compared to Threshold
it has less tendency to overfit to any fluctuations in query
volume experienced by the search engine on the previous
day.

Next, we examine the results for the ShortTerm ap-
proach in the bottom part of Table 2. Recall, as explained
in Section 4, that compared to LongTerm, ShortTerm
also takes into account the actual number of arrived queries
during the previous slot, while LongTerm only considers
the query traffic from the previous day. In general, we
find that for λ = 0.25, ShortTerm exhibits an improved
power/latency trade over the results exhibited by the Long-
Term approach. In particular, with mean response times
that are only a few milliseconds different from the results
of the Threshold and Näıve baselines, ShortTerm achieves
marked energy savings (33% and 64% respectively for M =
15; 26% and 68% for M = 20).

This further marked reduction in energy consumption shows
that the ShortTerm method can more accurately predict
the query load in the next slot by considering the query
load in the previous slot. As LongTerm makes the esti-
mation based on previous query volume alone, it selects a
higher number of machines, while ShortTerm can reduce
the necessary number of replicas, with corresponding energy



Table 2: Performance comparison among LongTerm, ShortTerm and the Baselines for different M and λ values.

λ ACT(ms) 90%CT % UQ Max Mch E(KWh) ACT(ms) 90%CT % UQ Max Mch E(KWh)

M = 15 M = 20
Baselines

Näıve 847 1,349 0 15 22.3 846 1,349 0 20 29.8
Threshold 853 1,354 0.03 15 12.0 853 1,354 0.03 19 12.9

LongTerm
0.25 848 1,350 0 15 12.0 848 1,349 0 17 12.1
0.5 969 1,394 1.35 6 6.3 896 1,409 0.08 7 7.4
0.75 3,194 3,886 19.19 2 2.7 2,299 3,049 4.68 3 4.2

ShortTerm
0.25 857 1,356 0.03 8 8.0 854 1,354 0.02 10 9.5
0.5 1,536 2,260 1.36 4 4.8 1,007 1,567 0.31 5 5.7
0.75 3,225 3,724 11.84 2 2.9 2,956 3,700 10.69 2 3.4
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Figure 5: Number of machines used along the day by Long-
Term and ShortTerm (λ = 0.5, M = 20) and the two
baselines, namely Näıve and Threshold.

savings. This is clearly illustrated in Figure 5, which shows
the number of machines used by each approach for M = 20
and λ = 0.5, as well as the two baselines. LongTerm and
ShortTerm clearly reduce the number of active machines,
but are less sensitive than Threshold to the sudden decrease
in query traffic at approx. 13:00 on the training day. More-
over, ShortTerm uses less query processors than Long-
Term over the day, confirming the power results shown in
Table 2.

In summary, in answer to our first research question, we
find that our proposed self-adapting models can markedly
reduce power consumption, without marked impact on ef-
ficiency. With respect to the second research question, of
the proposed LongTerm and ShortTerm instantiations,
ShortTerm demonstrates the highest promise, as by con-
sidering recent query traffic conditions, it is able to reduce
the number of required query processors along the day, with-
out marked degradations in query response time. Indeed,
with λ = 0.25 and M = 15 ShortTerm achieves a 33%
of power improvement by producing only a 1% increasing
in latency; with λ = 0.5 and M = 20 ShortTerm achieves
around mean completion times of 1 second but attains a 24%
power saving and maintains the percentage of unanswered
queries under 0.05%.

7.3 Modelling Latency Costs
In this section, we address our final research question,

examining how the latency of the search engine should be
modelled within our proposed approach. Firstly, recall that
Wang et al. [29] proposed three different efficiency metrics,
which we used as inspiration for efficiency cost functions in
Section 5.2. In particular, the latency of the search engine

Table 3: Comparison of latency functions, while varying λ.

ACT(ms) 90%CT % UQ Max Mch E(KWh)

λ = 0.25

L1 848 1,349 0 17 12.1
L2 869 1,380 0.04 20 14.2
L3 880 1,401 0.07 19 12.0

λ = 0.5

L1 896 1,409 0.07 7 7.4
L2 849 1,350 0.01 20 14.2
L3 860 1,357 0.03 7 7.6

λ = 0.75

L1 2,299 3,049 4.68 3 4.2
L2 3,544 4,113 22.77 9 3.9
L3 2,235 3,030 4.5 3 4.3

can be modelled with an exponential decay function (Equa-
tion (12), denoted L1), a step function with a fixed penalty
after a time threshold has expired (Equation (13), L2) or
a step function followed by an exponential decay (Equa-
tions (14), L3). As we consider the processing of queries
within a time slot, we set the time threshold as the slot
length Ts = 15 minutes.

Table 3 shows the comparison between the chosen latency
functions for the LongTerm approach for M = 20. We also
vary λ, in case the choice of λ can impact upon the choice of
the latency function. On a first inspection of Table 3, we ob-
serve that latency function L1 achieves the lowest response
times and energy consumptions. This can be explained with
reference to Figure 3: For L2, the cost function becomes
1 as soon as queries cannot be completed on time. Hence,
if the latency exceeds the time threshold even by a small
amount, the latency cost is 1, and the model resorts to the
power function to decide between options. As it is power
conservative in nature, a smaller number of machines will
be chosen. In contrast, by using the exponential decay, L1

and L3 represent ‘softer’ latency cost function, and hence
can permit small inefficiencies for power savings. Of these,
the simpler L1 is more appropriate than L3, for the same
reasoning as for L2. In summary, in addressing our final
research question concerning how the latency cost should be
modelled, we find that the exponential increase of cost as
latency increases represents the most promising function, as
per Equation (12).



8. CONCLUSIONS
While various have been dedicated to reduce power con-

sumption regarding IT systems, few works apply this con-
cept to the information retrieval field. In this work we pro-
pose a mathematical model for a replicated search engine
that allows the establishment of a trade-off between latency
and power consumption. Based on the query traffic from a
previous day, the system predicts the incoming query flow
and increases, decreases or maintains the number of avail-
able replicated query processors to answer the queries under
acceptable latencies. Experiments are conducted in compar-
ison to two baselines: Näıve (always uses the maximum num-
ber of machines) and Threshold (calculates the number of
necessary machines to ensure latency values under a thresh-
old), using 1 million queries submitted to a real commercial
search engine. Our results show that our self-adapting model
can achieve an energy savings of 33% while only degrading
mean query completion time by 10ms compared to a base-
line that provisions replicas based on a previous day’s traffic,
while more substantial energy savings can be attained while
accepting marginally larger efficiency degradations.

In this paper, we focused on the power savings achievable
when switching replicated query servers between standby
and actively processing search queries. There are advantages
to such a scenario, because during off-peak times standby
query servers may be re-purposed to other offline tasks,
such as indexing, ads/recommendations generation, and pre-
caching of result lists [15]. For future work, we will consider
a more complex scenario where servers are fully powered
down when not required, but incur delay on startup.
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