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ABSTRACT

Search result diversification has gained momentum as a way
to tackle ambiguous queries. An effective approach to this
problem is to explicitly model the possible aspects underly-
ing a query, in order to maximise the estimated relevance
of the retrieved documents with respect to the different as-
pects. However, such aspects themselves may represent in-
formation needs with rather distinct intents (e.g., informa-
tional or navigational). Hence, a diverse ranking could ben-
efit from applying intent-aware retrieval models when esti-
mating the relevance of documents to different aspects. In
this paper, we propose to diversify the results retrieved for a
given query, by learning the appropriateness of different re-
trieval models for each of the aspects underlying this query.
Thorough experiments within the evaluation framework pro-
vided by the diversity task of the TREC 2009 and 2010 Web
tracks show that the proposed approach can significantly im-
prove state-of-the-art diversification approaches.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models

General Terms

Algorithms, Experimentation, Performance
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1. INTRODUCTION

User queries often carry some degree of ambiguity [38]. On
the one hand, genuinely ambiguous queries (e.g., ‘zeppelin’)
have multiple interpretations (e.g., ‘airship’, ‘band’). On
the other hand, even those queries with a single, clearly de-
fined interpretation might still be underspecified, as it is not
clear which aspects of this interpretation the user is actually
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interested in (e.g., ‘led zeppelin’... ‘website’? ‘downloads’?
‘biography’? ‘albums’? ‘reunion’?) [13].

Search result diversification has recently gained attention
as a means to tackle query ambiguity. Instead of trying to
identify the ‘correct’ interpretation behind a query, the idea
is to diversify the search results, in the hope that different
users will find at least one of these results to be relevant to
their information need [1]. Differently from the traditional
assumption of independent document relevance [30], diver-
sification approaches typically consider the relevance of a
document in light of the other retrieved documents. For in-
stance, once users have found the information they are seek-
ing, it is questionable whether documents with the same (or
very similar) information will still be of any use [13].

An effective approach to diversifying search results is to
explicitly account for the various aspects' underlying an am-
biguous query [1, 7, 33, 36]. By doing so, the problem be-
comes to select a ranking of documents that collectively pro-
vide the maximum relevance with respect to these different
aspects. In a real scenario, however, the actual aspects of a
query are not known, nor is the relevance of each retrieved
document to each query aspect determined with certainty.
Moreover, the relevance of a document to a query aspect may
depend on the intent® underlying this aspect (e.g., informa-
tional or navigational [4, 31]). Additionally, different aspects
could feasibly represent information needs with different in-
tents. For instance, ‘website’, ‘downloads’, and ‘biography’
arguably represent navigational, transactional, and informa-
tional aspects of the query ‘led zeppelin’, respectively. Simi-
larly, ‘albums’ could exemplify a typed query aspect, repre-
senting an information need for a list of entities. In the same
vein, ‘reunion’ might denote a question-answering aspect of
the query ‘led zeppelin’, regarding whether the legendary
rock band have any plans of reuniting in the near future.

Queries with different intents have been shown to benefit
from different retrieval models [22]. Likewise, we hypothe-
sise that explicit diversification approaches may benefit from
accounting for the intents of different query aspects. For
instance, relevance estimations with respect to the ‘web-
site’ aspect of the query ‘led zeppelin’ could be arguably
improved by applying a retrieval model suitable for naviga-
tional queries. In this paper, we propose a novel diversifi-
cation approach, aimed at learning the appropriateness of

1Unless otherwise noted, through the rest of this paper, we
refer to query ‘interpretations’ and ‘aspects’ indistinctly.
2 Agrawal et al. [1] use “intents’ in the sense of what we call
“interpretations’. We believe our choice is more appropriate
in light of the established nomenclature in the literature.



multiple intent-aware retrieval models for each aspect. As a
result, the relevance of a document to multiple aspects—i.e.,
its diversity—can be estimated more effectively.

We thoroughly evaluate our approach in the context of the
diversity task of the TREC 2009 and 2010 Web tracks [11,
12]. In particular, we investigate learning strategies that ei-
ther select the most appropriate retrieval model or merge
multiple retrieval models for each query aspect. The results
of our investigations attest the effectiveness of both strate-
gies within our proposed intent-aware approach for diversi-
fying Web search results, with significant improvements on
top of state-of-the-art diversification approaches.

The remainder of this paper is organised as follows. Sec-
tion 2 describes related work on search result diversification
and search intents. Section 3 further details our main con-
tributions. Section 4 describes our approach for leveraging
intent-aware models for diversification. Sections 5 and 6
detail the experimental setup and the evaluation of our ap-
proach. Finally, Section 7 presents our conclusions.

2. RELATED WORK

In this section, we provide background on the search result
diversification problem and related approaches to this prob-
lem. We then set the grounds for our proposed approach by
reviewing related work on the use of search intents.

2.1 Search Result Diversification

Most of the existing diversification approaches are some-
how inspired by the work of Carbonell and Goldstein [5].
The basic idea of their Maximal Marginal Relevance (MMR)
method is to iteratively select a document with the highest
similarity to the query and lowest similarity to the already
selected documents, in order to promote novelty. Subse-
quent implementations of this idea include the approach of
Zhai et al. [41] to model relevance and novelty within a risk
minimisation framework. In particular, they promote doc-
uments with highly divergent language models from those
of the already selected documents. Chen and Karger [10]
proposed a probabilistic approach to the related problem of
finding at least one relevant result for a given query, by
choosing documents under the assumption that those al-
ready chosen are not relevant to the query. More recently,
Wang and Zhu [39] proposed to diversify a document rank-
ing as a means to reduce the risk of overestimating its rel-
evance. In their work, two documents are compared based
on the correlation of their relevance scores.

By assuming that similar documents will cover similar as-
pects, the aforementioned approaches only consider the as-
pects underlying a query implicitly. An alternative approach
consists of explicitly modelling these aspects [36]. For in-
stance, Agrawal et al. [1] proposed the IA-Select algorithm
for search result diversification. It employs a classification
taxonomy over queries and documents to iteratively pro-
mote documents that share a high number of classes with
the query, while demoting those documents with classes al-
ready well represented in the ranking. Similarly, Carterette
and Chandar [7] proposed a probabilistic approach to max-
imise the coverage of the retrieved documents with respect to
the aspects of a query, by modelling these aspects as topics
identified from the top ranked documents. Recently, Santos
et al. [33] introduced the xQuAD probabilistic framework
for search result diversification, which explicitly represents
different query aspects as ‘sub-queries’. They defined a di-

versification objective based on the estimated relevance of
documents to multiple sub-queries, as well as on the relative
importance of each sub-query in light of the initial query.

Since our goal is to produce intent-aware relevance esti-
mations given an explicit representation of query aspects,
our approach is also set in the context of explicit diversifi-
cation. Accordingly, in Section 6, we use both IA-Select [1]
and xQuAD [33] as a basis for evaluating our approach. In
particular, these two approaches represent the state-of-the-
art in explicit search result diversification.

2.2 Intents in Information Retrieval

Different information retrieval tasks have benefited from
taking into account the intent of a query (e.g., informational,
navigational, or transactional [4, 31]). These approaches can
be generally categorised based on whether or not they rely
on the classification of queries into predefined intents.

Query intent detection approaches first classify a query
with respect to a predefined set of intents. A retrieval model
specifically trained for the predicted intent is then applied
to retrieve documents for the query. For instance, Kang and
Kim [22] showed that queries of different intents can benefit
from the application of intent-specific retrieval models. A
major shortcoming of this approach, however, is the limited
accuracy of existing intent detection mechanisms [17].

Instead of classifying a query into a predefined target in-
tent, an alternative is to identify similar queries from a train-
ing set, and then to apply a retrieval model appropriate for
this set. This approach has an advantage over a classification
of queries based on a fixed set of intents, as queries of the
same intent often benefit from different retrieval models [17].
For example, Geng et al. [20] proposed an instance-based
learning approach using k-nearest neighbour (k-NN) classi-
fication to improve Web search effectiveness. In their ap-
proach, a k-NN classifier is used to identify training queries
similar to an unseen query. A retrieval model is then learned
based on the identified queries and applied to the unseen
query. A more general approach was proposed by Peng et
al. [27]. In their work, multiple ranking functions are chosen
from a pool of candidate functions, based on their perfor-
mance on training queries similar to an unseen query.

Our approach is similar in spirit to the approaches of Kang
and Kim [22], Geng et al. [20], and Peng et al. [27]. However,
while these approaches focused on inferring the intent of a
query, we target the problem of inferring the intent under-
lying different aspects of this query. Besides this difference
in granularity, our intent-aware approach tackles a different
search scenario, namely, search result diversification.

In a similar vein, Santos et al. [34] proposed a selective
diversification approach, aimed at tailoring a diversification
strategy to the ambiguity level of different queries. In partic-
ular, given an unseen query, their approach learns a trade-off
between relevance and diversity, based on optimal trade-offs
observed for similar training queries. As a result, their ap-
proach effectively determines when to diversify the results
for an unseen query, and also by how much. Our proposed
approach also differs from the approach of Santos et al. [34],
in that ours focuses on selecting appropriate retrieval mod-
els for different query aspects, as opposed to the query itself.
More importantly, their approach is orthogonal to ours. In
essence, instead of determining when to diversify the results
for a given query, we tackle the problem of how to diversify
these results given the identified aspects of this query.



3. CONTRIBUTIONS OF THIS PAPER

The major contributions of this paper are:

1. A novel aspect intent-aware diversification approach,
aimed at predicting, for each identified query aspect,
the appropriateness of different retrieval models.

2. A thorough evaluation of the proposed approach within
the standard experimentation paradigm of the diver-
sity task of the TREC 2009 and 2010 Web tracks.

4. INTENT-AWARE SEARCH RESULT
DIVERSIFICATION

As discussed in Sections 1 and 2, different aspects of an
ambiguous query can have rather different intents. To illus-
trate this, consider topic #1 from the diversity task of the
TREC 2009 Web track [11], as shown in Figure 1. In this
example, different aspects of the query ‘obama family tree’
are represented as a set of sub-topics, identified from the
query log of a commercial search engine. Moreover, these
sub-topics represent aspects with an informational (‘inf’) or
a navigational (‘nav’) intent, as judged by TREC assessors.

<topic number="1" type="faceted">
<query>obama family tree</query>
<description>
Find information on President Barack Obama’s family history,
including genealogy, national origins, places and dates of
birth, etc.
</description>
<subtopic number="1" type="nav">
Find the TIME magazine photo essay "Barack Obama’s Family
Tree".
</subtopic>
<subtopic number="2" type="inf">
Where did Barack Obama’s parents and grandparents come from?
</subtopic>
<subtopic number="3" type="inf">
Find biographical information on Barack Obama’s mother.
</subtopic>
</topic>

Figure 1: TREC 2009 Web track, topic #1, along
with its corresponding sub-topics.

Inspired by related work in Section 2.2, we hypothesise
that diversification approaches can benefit from retrieval
models targeted to the intents of different query aspects.
For instance, for the query exemplified in Figure 1, a di-
versification approach could leverage a navigational intent-
aware model for the first query aspect, and an informational
intent-aware model for the second and third aspects.

In this work, we propose a supervised learning approach
for estimating the appropriateness of multiple intent-aware
retrieval models for each query aspect. Given a query ¢, our
goal is to maximise the diversity of the retrieved documents
with respect to the aspects underlying this query. Without
loss of generality, following an explicit diversification strat-
egy, we can quantify the diversity of a document d given a
query g and the other retrieved documents S as the expected
relevance of d with respect to the aspects of ¢, denoted A(q):

P(d|S,q) = Z P(alq) P(d|S, g, a), (1)
acA(q)

where P(alq) captures the relative importance of each aspect
a given the query ¢, and P(d|S, ¢, a) denotes the probability
of the document d being relevant to this aspect, given how
well the documents in S already satisfy this aspect.

Equation (1) can be seen as a canonical formulation of the
objective functions deployed by different explicit diversifica-
tion approaches in the literature [34]. In particular, these
approaches differ primarily in how they represent the set of
aspects associated with a query, and in how they estimate
the relevance of each document to every identified query
aspect. For instance, Agrawal et al. [1] rely on the top-
level categories from the Open Directory Project (ODP)?
for representing query and document classes, and integrate
relevance and classification scores for ranking documents.
Santos et al. [33] exploit query reformulations from commer-
cial search engines as representations of the different aspects
of a query, and directly estimate the relevance of documents
to these aspects. Our proposed approach is agnostic to any
particular mechanism for generating explicit query aspect
representations. Indeed, our only assumption is that differ-
ent aspects may convey different user intents.

In the interest of keeping the description of our approach
general, in the remainder of this section, we adopt an ab-
stract view of aspects and intents.* In particular, to for-
malise our approach, we further derive Equation (1), by
marginalising P(d|S, g, a) over a target set of intents Z:

P(dlq,S Z P(alq) ZP (ila) P

acA(q) €T

(d[S;q,a,1),  (2)

where P(i]a) denotes the probability that the aspect a of the
initial query ¢ conveys the intent ¢. Accordingly, P(d|S, g, a, )
denotes the relevance of the document d in light of the
other retrieved documents S, the query ¢, the aspect a,
and the intent 7. Once again, without loss of generality,
assuming that different aspects are equally probable (i.e.,
P(alg) = ‘A(q)‘ ,Va € A(q)),” our task becomes two-fold:

1. To infer the probability P(i|a) of each intent i € Z
given a query aspect a € A(q);

2. To learn an appropriate retrieval model P(d|S, ¢, a, 1)
for each predicted intent i € 7.

In Section 4.1, we propose a classification approach for the
first task. For the second task, as described in Section 4.2,
we resort to learning-to-rank.

4.1 Inferring the Query Aspect Intents

In order to infer the probability of different intents for a
query aspect, we propose a linear classification approach. In
particular, given a query aspect a, our goal is to estimate
the probability of an intent i € 7 as:

P(ila) = f(w - xa), ()

where x, is a feature vector representing the aspect a, and
w is a weight vector, which is learned from labelled training
data. The function f maps the dot product of the weight and
feature vectors into the desired prediction outcome. Alter-
native regimes for instantiating the function f are described
in Section 4.1.1. Section 4.1.2 describes our choices for la-
belling training data. Lastly, Section 4.1.3 defines the clas-
sification space considered in this paper, and describes the
query aspect features leveraged for this classification task.

*http://www.dmoz. org

4A concrete instantiation of query aspects and their possible
intents is discussed in Section 4.1.3.

SFor alternatives on how to estimate the likelihood of differ-
ent query aspects, we refer the reader to [33, 36].



4.1.1 Classification Regimes

We propose two alternative regimes for instantiating the
function f in Equation (3): model selection and model merg-
ing. The model selection regime employs a hard classifica-
tion approach [40]. In particular, this approach treats dif-
ferent intents as mutually exclusive, hence assigning each
aspect a single (i.e., the most likely) intent. For instance,
for a target set of intents Z = {41, 12,3}, a possible selection
outcome could be: P(ii|a) = 1,P(i2]a) = 0,P(i3]a) = 0. In
this example, the aspect a would be associated with its most
likely intent, 1, and only the retrieval model P(d|S, ¢, a, 1)
would have an impact on the estimated relevance of docu-
ment d to the aspect a. This classification regime resembles
the selective retrieval approaches described in Section 2.2,
except that the most appropriate model is selected at the
aspect level (as opposed to the query level).

Our second regime, model merging, provides a relaxed al-
ternative to model selection. In particular, it deploys a soft
classification approach, in order to obtain a full probability
distribution over the considered intents [40]. For the above
example, a possible outcome of the model merging classifi-
cation could be P(i1]a) = 0.6,P(iz2]a) = 0.3,P(iz|la) = 0.1.
In this case, the estimated relevance of a document d to the
aspect a would be determined by a linear combination:

P(d|S,q,a) = 0.6 X P(d|S,q,a,i1)
+ 0.3 x P(d|S, ¢, a,i2)
+ 0.1 x P(d|S, ¢, a,i3).

Different classifiers can be deployed to implement both the
model selection and model merging regimes. Further details
about the specific classifiers that enable both regimes in our
investigations are provided in Section 5.3.

4.1.2 Classification Labels

In order to determine the ground-truth intent for different
query aspects, we investigate two alternatives. The first one
is based on the direct judgement by humans, who base their
assessment solely on the observed aspects. However, the
differences between query aspects may go beyond their ap-
parent characteristics. For instance, aspects with the same
judged intent could still benefit from leveraging different re-
trieval models [17]. Additionally, judging the intent of dif-
ferent aspects may be costly for large training datasets.

To overcome these limitations, we propose a second alter-
native for automatically labelling training aspects. Given
a training query g with aspects A(¢g) and a set of target
intents Z, with |A| = k and |Z| = p, we devise an oracle
selection mechanism. In particular, this oracle mechanism
always chooses the best out of the p* possible selections for
the k£ aspects of ¢, according to a diversity evaluation met-
ric (e.g., ERR-IA [9], or any of the metrics described in
Section 5.4). Although estimating this oracle may be in-
feasible for large values of k, it can be easily estimated for
most practical settings. For instance, the maximum number
of aspects per query in the TREC 2009 and 2010 Web tracks
is k = 8. Moreover, if many more aspects were available for
a particular query, less plausible aspects could be discarded
without much loss. Indeed, this is precisely what leading
Web search engines do when displaying only the top sugges-
tions for a user query, which have been shown to deliver an
effective diversification performance [33]. Finally, it is worth
noting that this entire labelling process is conducted offline.

4.1.3 Classification Features

So far, we have intentionally described our approach with-
out a strict definition of the classification space. This ab-
stract view of classification instances as query aspects demon-
strates the generality of our proposed approach, and its ap-
plicability to different explicit diversification approaches in
the literature (e.g., [1, 7, 33, 36]). In particular, our pro-
posed approach is not bound to any particular query as-
pect representation. In fact, any aspect representation that
portrays the multitude of information needs underlying an
ambiguous query [35] is potentially applicable, as different
information needs can convey different user intents.

Nonetheless, to enable our investigations in Section 6, we
follow Santos et al. [33, 36] and adopt a concrete represen-
tation of query aspects as ‘sub-queries’. In particular, a
sub-query can be seen as a keyword-based representation
of the information need expressed by a query aspect. In
our experiments, we consider two mechanisms for generat-
ing sub-queries, as described in Section 5.1. Additionally,
limited by the TREC Web test collection used in our ex-
periments [11, 12], we restrict the space of target intents to
navigational and informational ones. Based on this repre-
sentation of aspects and intents, and inspired by research on
related query analysis tasks, we devise a large feature set for
sub-query intent classification. In particular, these include
features computed from the words in the sub-query itself, as
well as from the top documents retrieved for this sub-query.
In total, we devise 838 features, based on 21 different fea-
ture classes. These features are described on the left side of
Table 1, and organised into three groups:

Query log features (LOG). Query logs provide valuable
evidence for discriminating between informational and navi-
gational intents. To exploit such evidence, we compute sev-
eral sub-query features based on the 15-million query MSN
Search 2006 Query Log. For instance, we count the raw fre-
quency of sub-queries, as navigational sub-queries are gen-
erally more popular than informational ones. Likewise, in-
formational sub-queries intuitively require more effort from
the users while inspecting the retrieved results. We quantify
this in terms of the number of examined results and the time
spent in doing so, as well as the click entropy [15].

Query performance predictors (QPP). The intent of a
sub-query may be reflected not only on the sub-query itself,
but also on the documents retrieved for this sub-query. For
instance, a low coherence of the top-retrieved documents
could indicate a sub-query with an informational intent.
This, in turn, can reflect on the performance of this sub-
query when used in a retrieval system. To exploit this in-
tuition, we build upon a large body of research on query
performance prediction [6] and leverage both pre- and post-
retrieval predictors as sub-query features. In particular, the
former are solely based on statistics of the sub-query terms,
while the latter also leverage information from the docu-
ments retrieved for the sub-query.

Taxonomy-based features (TAX). Informational needs
are intuitively broader than navigational ones, in terms of
the concepts they cover. To quantify this intuition, we de-
vise different features based on concepts from two different
taxonomies derived from Wikipedia: categories and named
entities. For the latter, we consider entities of four types:
people, organisations, products, and locations. In partic-



Sub-Query Features Document Features
Group | Feature Class Description Total | Group | Feature Class Description Total
LOG | ClickCount No. of clicks 120 [ WM | BM25 BM25 score [25] 5
LOG | ClickEntropy URL-level click entropy [15] 3|WM |[DPH DPH score [25] 5
LOG | HostEntropy Host-level click entropy 2(WM |LM LM score (Dirichlet) [25] 5
LOG | QueryFrequency | No. of occurrences 4({WM | PL2 PL2 score [25] 5
LOG | ResultCount No. of examined results 3({WM | MQT No. of matching query terms 5
LOG | SessionDuration | Session duration (in sec.) 3|FM BM25F BM25F score [25] 1
QPP [AVICTF Pre-retrieval predictor [21] 1| FM PL2F PL2F score [25] 1
QPP | AvIDF Pre-retrieval predictor [21] 1[DM MRF MRF proximity score [25] 8
QPP | AvPMI Pre-retrieval predictor [21] 1| DM pBiL DFR pBIiL proximity score [25] 8
QPP | ClarityScore Post-retrieval predictor [19] 30 [LA Absorbing Absorbing Model score [28] 1
QPP | EnIDF Pre-retrieval predictor [21] 1|LA Edgerecip No. of reciprocal links [3] 1
QPP | Gamma Pre-retrieval predictor [21] 2(LA Inlinks No. of inlinks 1
QPP | QueryDifficulty | Post-retrieval predictor [2] 30 | LA Outlinks No. of outlinks 1
QPP | QueryFeedback | Post-retrieval predictor [42] 30| LA InvPageRank PageRank transposed score 2
QPP | QueryScope Pre-retrieval predictor [21] 1|LA PageRank PageRank score [26] 1
QPP | TermCount No. of terms 1[SP SpamFusion Spam likelihood [16] 1
QPP | TokenCount No. of tokens 1| URL [ URLDigits No. of digits in domain and host 2
TAX | ConceptCosine | Cosine over concepts [37] 4] URL [ URLComponents | No. of host/path/query components 3
TAX | ConceptCount | No. of concepts [34] 360 | URL | URLLength Length of host/path/query string 3
TAX | ConceptEntropy | Entropy over concepts [37] 120 | URL | URLType Root, subroot, path, file 1
TAX | DisambSenses No. of disamb. senses [32] 120 | URL | URLWiki Whether URL is from Wikipedia 1
GRAND TOTAL 838 61

Table 1: All features used in this work. Sub-query features (left side) are used for inferring the intents of
different query aspects. Document features (right side) are used to produce intent-aware learned models.

ular, we represent the documents retrieved for each sub-
query in the space of the concepts from these different tax-
onomies.® Based on this representation, we compute vari-
ous distributional features, such as the average number of
retrieved concepts, the average distance between pairs of
documents, and the concept entropy of the entire retrieved
list. Additionally, we also quantify the number of ambiguous
entities among the top documents retrieved for a sub-query.
Our intuition is that the presence of such entities further
indicates the broadness of the sub-query [37].

Most of these features are extracted in multiple variants.
For instance, retrieval-based features are computed based on
five different approaches, as implemented by the Terrier IR
platform [25]: Okapi BM25, the Divergence From Random-
ness (DFR) DPH and PL2 models, a language modelling
(LM) approach with Dirichlet smoothing, and a count of
the number of matching query terms. Additionally, these
features are estimated at six rank cutoffs: 1, 3, 5, 10, 50,
and 100. Finally, distributional features (e.g., the number
of concepts across the retrieved documents) are summarised
using up to four different statistics: mean, standard devia-
tion, median, and maximum. Altogether, these amount to
the grand total of 838 features.

4.2 Learning Intent-Aware Retrieval Models

In Section 4.1.1, we proposed two regimes for inferring
an intent distribution P(i|a) for each aspect a. In this sec-
tion, we propose a learning-to-rank approach for producing
suitable intent-aware retrieval models for each intent of a.

4.2.1 Model Learning

In order to produce an intent-aware model P(d|S,q, a, )
for each intent ¢ underlying the aspect a, we once again re-
sort to machine learning. In particular, we deploy a large set

6Category features are computed from documents retrieved
from Wikipedia for each sub-query, while entity features are
based on documents retrieved from the target collection.

of document features, and leave it to a learning-to-rank al-
gorithm to generate retrieval models optimised for different
intents. To achieve this goal, each model is learned using the
entire feature set, but with a different training set of queries
for each target intent. Given the intents considered in our
investigation (i.e., informational and navigational), we use
two intent-targeted query sets from the TREC 2009 Mil-
lion Query track [8]. The first set contains 70 informational
queries and the second set contains 70 navigational queries,
as judged by TREC assessors. As a learning algorithm, we
use Metzler’s Automatic Feature Selection (AFS) [24]. In
particular, AFS learns effective ranking models by directly
optimising an IR evaluation metric. In our experiments, it
is deployed to optimise mean average precision (MAP).

4.2.2 Document Features

To enable the generation of effective intent-aware retrieval
models, we deploy a total of 61 document features, sum-
marised on the right portion of Table 1, and organised into
six groups: standard weighting models (WM), field-based
models (FM), term dependence models (DM), link analysis
(LA), spam (SP), and URL features. As these are all stan-
dard features traditionally used in the learning-to-rank liter-
ature [29],” we refer the interested reader to the descriptions
and pointers provided in the table. In particular, each fea-
ture is computed for a sample of 5000 documents retrieved
by the DFR DPH weighting model for each query. Standard
weighting models and term dependence models are deployed
with their commonly suggested parameter settings in the lit-
erature. Field-based models are trained through simulated
annealing [23]. The remaining (query-independent) features
are optimised using FLOE [18]. Finally, all feature scores
are normalised to lie between 0 and 1 for each query.

Table 2 lists the top 10 features selected by AF'S for each of
our produced intent-aware models. For each feature, we also
show its attained performance in terms of MAP when com-

"We leave the investigation of features that exploit the de-
pendencies between d and the documents in S for the future.



Informational Navigational

Feature MAP [ Feature MAP
1| DPH 0.2614 | DPH 0.2110
2 | URLDigits 0.2752 | MRF (body) 0.2273
3| PL2 (title) 0.2819 | BM25 (title) 0.2408
4 | BM25F 0.2915 | URLWiki 0.2517
5| pBiL (body) 0.2963 | MQT 0.2592
6 | pBiL (anchor) 0.2985 | URLLength  0.2629
7 | Edgerecip 0.3001 | Absorbing 0.2666
8| LM (title) 0.3010 | InvPageRank 0.2695
9| MQT (body) 0.3017 | Inlinks 0.2718
10 | MQT 0.3026 | pBiL (body) 0.2738

Table 2: Top 10 selected features in the two intent-
aware retrieval models used in this paper.

bined with the features selected before it. From the table,
we observe that the top selected features are generally intu-
itive. For instance, DPH (which is used to generate the ini-
tial sample of documents for learning) is the top feature for
both models. Likewise, as expected, various URL and link
analysis features (e.g., URLWiki, URLLength, Absorbing,
InvPageRank, Inlinks) are ranked high in the navigational
model. Besides producing intuitive intent-aware models, we
believe that our data-driven approach based on a large set of
features provides a more robust alternative to hand-picking
features traditionally associated with a particular intent.

4.3 Summary

In this section, we have introduced a novel supervised
learning approach for diversifying the search results in light
of the intents of different aspects of an ambiguous query.
To enable our investigations in Section 6, we have instan-
tiated our intent-aware diversification approach in light of
two target aspect intents, namely, informational and naviga-
tional. Given these intents, we have described large feature
sets for both inferring the intent distribution of different as-
pects (Section 4.1), as well as for learning the corresponding
intent-aware retrieval models (Section 4.2). Although the
choice of appropriate feature sets naturally depends on how
learning instances (i.e., aspects) and labels (i.e., intents) are
represented [40], it is worth reiterating that our approach is
agnostic to these representations. While instantiating it for
a different aspect representation or a different set of intents
may require devising different features, no modification to
the approach itself would be necessary. Moreover, although
motivated by the learning tasks at hand, both feature sets in
Table 1 comprise features deployed for a variety of different
purposes in the literature. As a result, we believe they might
be useful for deploying our approach with target intents be-
yond the two considered in our current investigations.

5. EXPERIMENTAL SETUP

In the next section, we investigate our intent-aware diver-
sification approach proposed in Section 4. In particular, we
aim to answer two main research questions:

1. Can we improve diversification performance with our
intent-aware model selection regime?

2. Can we improve diversification performance with our
intent-aware model merging regime?

These questions are investigated in Sections 6.1 and 6.2,
respectively. In the remainder of this section, we detail the
experimental setup that supports these investigations.

5.1 Collection, Queries, and Sub-Queries

Our analysis is conducted within the standard experi-
mentation paradigm provided by the diversity task of the
TREC 2009 and 2010 Web tracks [11, 12]—henceforth de-
noted WTO09 and WT10 tasks, respectively. As a document
collection, we consider the category-B ClueWeb09 dataset,
as used in these tasks. This collection comprises 50 million
English documents, aimed to represent the first tier of a
commercial search engine index. In our experiments, we in-
dex this collection using Terrier [25], after applying Porter’s
English weak stemmer and without removing stopwords.

The WT09 and WT10 tasks comprise 50 and 48 queries,
respectively. As mentioned in Section 4.1.3, for each of these
98 queries, we generate two sets of sub-queries, in order to
provide alternative aspect representations for our investi-
gations. The first sub-query set is based on the official
sub-topics identified by TREC assessors for each of these
queries. In particular, each WT09 query has an average of
3.54 informational and 1.32 navigational aspects, as judged
by TREC assessors. For the WT10 queries, these numbers
become 2.84 and 1.50, respectively. As TREC only provides
a natural language description for each sub-topic, we obtain
a shorter, keyword-like version using Amazon’s Mechanical
Turk. This step was necessary to make these sub-topics bet-
ter resemble real Web search requests, so as to enable their
matching in our query log. Note that this procedure by no
means interfere with our conclusions, as these keyword-like
sub-topics are uniformly deployed for all tested approaches.

Using the official TREC Web track sub-topics as a sub-
query set has two main advantages. Firstly, as discussed in
Section 4.1.2, they provide judged intent labels for each sub-
query, which can be contrasted to our proposed performance-
oriented labelling of training data. Secondly and most im-
portant, they provide a controlled environment for evalu-
ating the effectiveness of our approach while isolating the
impact of any particular aspect representation. In addition
to this ‘ground-truth’ sub-query set, we also evaluate our
approach using an alternative sub-query set. Following San-
tos et al. [33], for each of the 98 queries, we obtain up to 13
query suggestions from a commercial search engine.

5.2 Diversification Approaches

In Section 6, we apply our intent-aware model selection
and model merging regimes to two diversification approaches:
TA-Select [1] and xQuAD [33]. In particular, both approaches
instantiate the general explicit diversification objective de-
scribed in Equation (1), and hence can directly leverage our
intent-aware aspect relevance estimations. Additionally, as
discussed in Section 2.1, these approaches are representa-
tive of the state-of-the-art in search result diversification.
Indeed, a variant of xQuAD was among the top perform-
ing approaches in the diversity task of both TREC 2009
and 2010 [11, 12]. In our investigations, both IA-Select and
xQuAD diversify the top 1000 documents retrieved by DPH.

5.3 Classification Approaches

In Section 4.1, we introduced two regimes for leveraging
the inferred intents of different aspects: model selection and
model merging. The model selection regime builds upon a
hard classification of intents. To enable this regime, we de-
ploy two alternative classifiers. Firstly, we train a support
vector machine (SVM) classifier with a polynomial kernel
through a sequential minimal optimisation [40]. Our second



Regime ERR-IA@20 a-nDCGQ20 NRBP MAP-TA

DPH 0.1607 0.2097 0.1318 0.0442
+IA-Select | UNI(INF) 0.2020 0.2472 0.1733 0.0634
+IA-Select | UNI(NAV) 0.2155 0.2634 0.1885 0.0652
+IA-Select | SEL(ORA,JUDG) 0.2166 (7.2,0.5) 0.2623 (6.1,-0.4) 0.1859 (7.3,-1.4) 0.0641 (1.1,-1.7)
+IA-Select | SEL(LOG,JUDG) 0.2090 (3.5,-3.0) 0.2548 (3.1,-3.3) 0.1799 (3.8.-4.6) 0.0657 (3.6,0.8)

8 +IA-Select | SEL(SVM,JUDG) 0.2126 (5.2,-1.3) 0.2594 (4.9,-1.5) 0.1834 (5.8,-2.7) 0.0664 (4.7,1.8)

‘3, | +1A-Select [ SEL(ORA,PERF) 0.2782 (37.74,29.1a) 0.3134 (26.84,19.0a) 0.2562 (47.84,35.94) 0.0724 (14.24,11.0a)

4? +IA-Select | SEL(LOG,PERF) 0.2394 (18.54,11.12) 0.2780 (12.54,5.5) 0.2155 (24.44,14.38) 0.0688 (8.54,5.5)

S [ +1A-Select SEL(SVM,PERF) 0.2289 (13.3,6.2) 0.2713 (9.7,3.0) 0.2036 (17.5,5.0) 0.0677 (6.84,3.8)

2 | +xQuAD | UNI(INF) 0.1945 0.2423 0.1664 0.0565

3 +xQuAD | UNI(NAV) 0.2219 0.2661 0.1954 0.0665

; +xQuAD [ SEL(ORA,JUDG) 0.2131 (9.6,-4.0) 0.2602 (7.44,-2.2) 0.1826 (9.7,-6.6) 0.0643 (13.84,-3.3)
+xQuAD | SEL(LOG,JUDG) 0.2094 (7.7,-5.6) 0.2542 (4.9,-4.5) 0.1801 (8.2,-7.8) 0.0631 (11.7,-5.1)
+xQuAD | SEL(SVM,JUDG) 0.2153 (10.7,-3.0) 0.2594 (7.1,-2.5) 0.1868 (12.3,-4.4) 0.0671 (18.8,0.9)
+xQuAD | SEL(ORA,PERF) 0.2650 (36.24,19.4a) 0.3025 (24.84,13.7a) 0.2413 (45.04,23.5a) 0.0688 (21.84,3.5a)
+xQuAD | SEL(LOG,PERF) 0.2395 (23.1a,7.92) 0.2784 (14.9a,4.62) 0.2153 (29.4a,10.2a) 0.0689 (21.94,3.6)
+xQuAD | SEL(SVM,PERF) 0.2370 (21.94,6.8) 0.2754 (13.74,3.5) 0.2125 (27.7a,8.8) 0.0694 (22.84,4.4)
+IA-Select | UNI(INF) 0.1944 0.2378 0.1676 0.0553

% | +IA-Select UNI(NAV) 0.1978 0.2503 0.1662 0.0610

.g +IA-Select [ SEL(ORA,PERF) 0.2736 (140.7a4,38.34) 0.3083 (29.64,23.2a) 0.2518 (50.2a4,51.54) 0.0687 (24.24,12.6a)

% | +IA-Select | SEL(LOG,PERF) 0.2063 (6.1,4.3) 0.2548 (7.1,1.8) 0.1756 (4.8,5.7) 0.0631 (14.1a,3.42)

2 | +I1A-Select SEL(SVM,PERF) 0.2085 (7.3,5.4) 0.2560 (7.7,2.3) 0.1790 (6.8,7.7) 0.0625 (13.0,2.54)

Z [TxQuAD [ UNI(inF) 0.1766 0.2202 0.1436 0.0515

2 | +xQuAD [ UNI(NAV) 0.2003 0.2485 0.1723 0.0626

g | +xQuAD SEL(ORA,PERF) 0.2620 (48.44,30.8a) 0.2985 (30.24,20.14) 0.2384 (66.04,35.44) 0.0687 (26.14,9.7a)

C | +xQuAD SEL(LOG,PERF) 0.2051 (16.1a,2.4) 0.2526 (10.24,1.6) 0.1754 (22.14,1.8) 0.0636 (16.7a,1.6)
+xQuAD | SEL(SVM,PERF) 0.2042 (15.64,1.9) 0.2526 (10.2,1.6) 0.1743 (21.42,1.2) 0.0628 (15.24,0.3)
WTO09 best (uogTrDYCcsB) [11] | 0.1922 0.3081 0.1617 0.0592

Table 3:

Diversification performance of IA-Select and xQuAD using informational or navigational models

uniformly (UNI) or selectively (SEL) according to the WT09 topics, with the WT10 topics used for training.

classifier performs a multinomial logistic regression with a
ridge estimator [40]. In both cases, the single most likely in-
tent is chosen for each aspect, in a typical selective fashion.
In order to enable our second regime, model merging, we
fit the output of the SVM classifier to a logistic regression
model, hence obtaining a full probability distribution over
intents for each aspect underlying the query [40]. In order to
cope with the high dimensionality of our sub-query feature
set, classification is performed after a dimensionality reduc-
tion via principal component analysis [40]. All classification
tasks are performed using the Weka suite.®

5.4 Evaluation and Training Procedure

We report our results based on the official evaluation met-
rics in the diversity task of the TREC 2010 Web track [12]:
ERR-IA [9], a-nDCG [13], NRBP [14], and MAP-IA [1].
The first three metrics implement a cascade user model,
which penalises redundancy by assuming an increasing prob-
ability that users will stop inspecting the results as they find
their desired information. The fourth metric is based on a
simpler model, which rewards a high coverage of query as-
pects, without directly penalising redundancy.

Our evaluation ensures a complete separation between
training and test settings. In particular, we use the WT09
and WT10 queries interchangeably as training and test, in
a cross-year evaluation fashion (i.e., we train on WT09 and
test on WT10, and vice versa). This training procedure
renders our results on the WT10 queries directly compa-
rable to those of participant systems in TREC 2010. For
the reported results on the WT09 queries, however, we note
that TREC 2009 participant systems naturally did not have
access to WT10 queries for training. This training proce-
dure is used for the classification approaches described in

Shttp://www.cs.waikato.ac.nz/ml/weka/

Section 5.3, as well as for xQuAD’s diversification trade-off
parameter A [33]. As for IA-Select, it is a parameter-free
diversification approach, and hence requires no training.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate our intent-aware diversifica-
tion approach, in order to answer the two research ques-
tions stated in Section 5. In particular, Section 6.1 investi-
gates the effectiveness of our model selection regime, while
Section 6.2 analyses the effectiveness of the model merging
regime. Both regimes were described in Section 4.1.1.

6.1 Intent-Aware Model Selection

Our primary goal in this experiment is to assess the ef-
fectiveness of our model selection regime for search result
diversification. As described in Section 4.1.1, this regime
selects the most likely between an informational and a nav-
igational intent-aware retrieval model for each aspect. As
a baseline, we consider a simple regime that uniformly de-
ploys one of the informational or navigational models for all
aspects, regardless of the intents of these aspects. To vali-
date our findings, as described in Section 5.2, we test both
our model selection regime as well as the baseline uniform
regime applied to two diversification approaches: TA-Select
and xQuAD. Additionally, these diversification approaches
are deployed using two different aspect representations: the
official TREC Web track sub-topics and query suggestions
from a search engine, as discussed in Section 5.1. Moreover,
we test variants of our model selection regime. Each variant
is denoted SEL(C,L), where C and £ denote a classifier and
a set of classification training labels, respectively. In par-
ticular, C can be one of three classifiers: an oracle (ORA),
which simulates a perfect classification accuracy, and the lo-
gistic regression (LOG) and support vector machine (SVM)



Regime ERR-IA@20 a-nDCGQ20 NRBP MAP-TA

DPH 0.1952 0.2620 0.1509 0.0469
+IA-Select | UNI(INF) 0.2485 0.3261 0.2011 0.0717
+IA-Select | UNI(NAV) 0.2866 0.3465 0.2490 0.0729
+IA-Select | SEL(ORA,JUDG) 0.2829 (13.8,-1.3) 0.3496 (7.2,0.9) 0.2428 (20.7,-2.5) 0.0763 (6.4,4.7)
+IA-Select | SEL(LOG,JUDG) 0.2797 (12.6,-2.4) 0.3442 (5.6,-0.7) 0.2396 (19.1,-3.8) 0.0730 (1.8,0.1)

8 +IA-Select | SEL(SVM,JUDG) 0.2897 (16.64,1.1) 0.3535 (8.4,2.0) 0.2485 (23.64,-0.2)  0.0750 (4.6,2.9)

‘3, | +1A-Select [ SEL(ORA,PERF) 0.3791 (52.6a4,32.3a) 0.4228 (29.7a4,22.0a) 0.3491 (73.64,40.2a) 0.0859 (19.84,17.8a)

4? +IA-Select | SEL(LOG,PERF) 0.3117 (25.44,8.84) 0.3710 (13.8a,7.1a) 0.2734 (36.0a,9.82) 0.0773 (7.8,6.08)

= +IA-Select | SEL(SVM,PERF) 0.3044 (22.54,6.2) 0.3638 (11.64,5.0) 0.2667 (32.64,7.1) 0.0765 (6.7,4.9)

%2 | +xQuAD | UNI(INF) 0.2472 0.3241 0.2007 0.0715

2 +xQuAD | UNI(NAV) 0.2905 0.3479 0.2535 0.0754

; +xQuAD [ SEL(ORA,JUDG) 0.2699 (9.2,-7.1) 0.3408 (5.2,-2.0) 0.2245 (11.9,-11.4) 0.0782 (9.4,3.7)
+xQuAD | SEL(LOG,JUDG) 0.2708 (9.5,-6.8) 0.3346 (3.2,-3.8) 0.2333 (16.2,-5.0) 0.0743 (3.9,-1.5)
+xQuAD | SEL(SVM,JUDG) 0.2913 (17.84,0.3) 0.3512 (s.4,0.9) 0.2546 (26.94,0.4) 0.0793 (10.9,5.2)
+xQuAD | SEL(ORA,PERF) 0.3616 (46.34,24.5a) 0.4119 (27.1a,18.4a) 0.3294 (64.14,29.94) 0.0864 (20.84,14.6a)
+xQuAD | SEL(LOG,PERF) 0.3090 (25.04,6.4) 0.3664 (13.14,5.3) 0.2726 (35.8a,7.5) 0.0791 (10.6,4.9)
+xQuAD | SEL(SVM,PERF) 0.3098 (25.34,6.6) 0.3680 (13.54,5.8) 0.2707 (34.9a,6.8) 0.0798 (11.64,5.8)
+IA-Select | UNI(INF) 0.2468 0.3135 0.2053 0.0652

% | +IA-Select UNI(NAV) 0.2826 0.3419 0.2454 0.0677

.g +IA-Select [ SEL(ORA,PERF) 0.3677 (49.0a4,30.1a4) 0.4174 (33.14,22.1a) 0.3343 (62.84,36.24) 0.0774 (18.74,14.3a)

% | +IA-Select | SEL(LOG,PERF) 0.2942 (19.2a,4.1) 0.3523 (12.44,3.0) 0.2575 (25.44,4.9) 0.0715 (9.74,5.64)

2 | +I1A-Select SEL(SVM,PERF) 0.2945 (19.34,4.2) 0.3530 (12.6a,3.2) 0.2586 (26.0a,5.4) 0.0722 (10.74,6.62)

% [TxQuAD [ UNI(NF) 0.2456 0.3110 0.2025 0.0600

2 | +xQuAD [ UNI(NAV) 0.2579 0.3211 0.2174 0.0597

g | +xQuAD SEL(ORA,PERF) 0.3554 (44.74,37.8a) 0.4078 (31.1a4,27.0a) 0.3210 (58.54,47.7a) 0.0768 (25.04,258.6a)

C | +xQuAD SEL(LOG,PERF) 0.2743 (11.74,6.4) 0.3375 (8.54,5.1) 0.2349 (16.04,8.0) 0.0716 (19.34,19.9a)
+xQuAD | SEL(SVM,PERF) 0.2805 (14.24,8.82) 0.3435 (10.54,7.0) 0.2418 (19.4a,11.2) 0.0730 (21.7a,22.3a)
WT10 best (uog [rB67xS) [12]] 0.2981 0.4178 0.2616 0.0737

Table 4: Diversification performance of IA-Select and xQuAD using informational or navigational models
uniformly (UNI) or selectively (SEL) according to the WT10 topics, with the WT09 topics used for training.

classifiers described in Section 5.3. As for the classification
labels £, as described in Section 4.1.2; we consider both hu-
man judgements (JUDG) as well as the selection with best
diversification performance (PERF) on the training data.

Tables 3 and 4 compare the aforementioned variants of
our model selection regime to the baseline uniform regime
on the WT09 and WT10 queries, respectively, in terms of
the four metrics described in Section 5.4: ERR-IA@20, a-
nDCG@20, NRBP, and MAP-IA. In parentheses, we show
the percent improvement of each variant of our model se-
lection regime compared to the uniform regime that uses
the informational (UNI(INF)) or the navigational (UNI(NAV))
model, respectively. Significant improvements are measured
by the Wilcoxon signed-rank test. In particular, the symbols
A (V) and A (V) denote a significant increase (decrease) at
the p < 0.01 and p < 0.05 levels, respectively. Lastly, the
bottom row in Tables 3 and 4 shows the performance of the
top performing category-B system in the WT09 and WT10
tasks [11, 12], respectively, hence providing a further refer-
ence value for evaluating our intent-aware approach.

From Tables 3 and 4, we first note that the uniform appli-
cation of an informational or a navigational model provides
a strong baseline performance. The uniform application of
the navigational model, in particular, performs at least com-
parably to the best performing TREC system in both the
WT09 and WT10 tasks. To see whether our model selection
regime can improve upon this strong baseline, we first look at
the performance of this regime using an oracle classifier. The
results show that a massive improvement can be attained by
selecting the most appropriate model for each aspect (as op-
posed to uniformly using a single model for all aspects) for
both TA-Select and xQuAD, when the performance-oriented
labels (PERF) are used for training. On the WT09 queries
(Table 3), compared to the strongest uniform setting (i.e.,

UNI(NAV)) in terms of ERR-IA@20, improvements can be as
high as 29.1% for TA-Select and 19.4% for xQuAD using the
Web track sub-topics as sub-queries, and are always signifi-
cant. When using query suggestions, the potential improve-
ments are 38.3% and 30.8%, respectively. On the WT10
queries (Table 4), similar figures are observed: 32.3% and
24.5% gain for [A-Select and xQuAD, respectively, using the
Web track sub-topics; 30.1% and 37.8% using query sugges-
tions. Once again, all improvements are statistically signif-
icant. Human judgements, in contrast, provide a supotimal
labelling criterion, as denoted by the lower performance at-
tained when using the JUDG labels. Indeed, even an oracle
classifier, which always choses the correct intent according to
these judgements (i.e., the SEL(ORA,JUDG) regime), cannot
improve over applying the navigational model uniformly. As
discussed in Section 4.1.2, this further confirms our intuition
that the appropriateness of an intent-aware retrieval model
for a given aspect cannot be effectively judged purely on the
basis of the apparent characteristics of this aspect.

Besides showing a strong potential for improving diversi-
fication performance, as demonstrated using an oracle clas-
sifier (i.e., the SEL(ORA,PERF) regime), our intent-aware ap-
proach is also effective in a practical deployment based on
standard classifiers. Indeed, Tables 3 and 4 show that our
model selection regime using both logistic regression (LOG)
and support vector machine (SVM) classifiers with PERF la-
bels always improves compared to a uniform regime, of-
ten significantly. For instance, on the WT09 queries (Ta-
ble 3) and considering the Web track sub-topics as aspect
representations, compared to the stronger UNI(NAV) base-
line, improvements in terms of ERR-IA@20 are as high as
11.1% for TA-Select (SEL(LOG,PERF)) and 7.9% for xQuAD
(SEL(LOG,PERF)). On the WT10 queries (Table 4), improve-
ments are as high as 8.8% for IA-Select (SEL(LOG,PERF))



Regime ERR-IA@Q20 «o-nDCG@20 NRBP MAP-TA

DPH 0.1607 0.2097 0.1318 0.0442
+TIA-Select | SEL(svM,JUDG) | 0.2126 0.2594 0.1834 0.0664
+IA-Select | MRG(SVM,JUDG) | 0.2224 (4.6) 0.2661 (2.6) 0.1930 (5.2) 0.0670 (0.9

S | +IA-Select | SEL(SVM,PERF) | 0.2289 0.2713 0.2036 0.0677

| +IA-Select | MRG(SVM,PERF) | 0.2206 (-3.6) 0.2644 (-2.5)  0.1922 (-5.6) 0.0681 (0.6)

= +xQuAD [SEL(svM,JuDG) [0.2I53 0.2594 0.1868 0.0671
+xQuAD | MRG(SVM,JUDG) | 0.2212 (2.7) 0.2638 (1.7) 0.1936 (3.6) 0.0676 (0.7)
+xQuAD [SEL(SVM,PERF) [0.2370 0.2754 0.2125 0.0694
+xQuAD | MRG(SVM,PERF) | 0.2371 (0.0) 0.2759 (0.2) 0.2117 (-0.4)  0.0692 (-0.3)
DPH 0.1952 0.2620 0.1509 0.0469
+TA-Select | SEL(svM,JUDG) [ 0.2897 0.3535 0.2485 0.0750
+IA-Select | MRG(SVM,JUDG) | 0.2946 (1.74) 0.3579 (1.25) 0.2537 (2.15) 0.0755 (0.7)

S | +I1A-Select [ SEL(SVM,PERF) | 0.3044 0.3638 0.2667 0.0765

| +IA-Select | MRG(SVM,PERF) | 0.3069 (0.s) 0.3663 (0.7) 0.2690 (0.9) 0.0769 (0.5

= +xQuAD [ SEL(svM,JUDG) |0.2913 0.3512 0.2546 0.0793
+xQuAD | MRG(SVM,JUDG) | 0.2960 (1.6) 0.3544 (0.9) 0.2594 (1.9) 0.0798 (0.6)
+xQuAD [SEL(SVM,PERF) [0.3098 0.3680 0.2707 0.0798
+xQuAD | MRG(SVM,PERF) | 0.2997 (-3.3)  0.3592 (-2.4)  0.2622 (-3.1)  0.0819 (2.6)

Table 5: Diversification performance of IA-Select and xQuAD using informational or navigational models
selectively (SEL) or through merging (MRG). WT09 and WT10 results are shown on the top and bottom
halves, respectively. As in Tables 3 and 4, WTO09 results are trained on WT10 topics, and vice versa.

and 6.6% for xQuAD (SEL(SVM,PERF)). Similar improve-
ments across the other reported metrics are consistently ob-
served. When query suggestions are used as aspect rep-
resentations, although improvements are less pronounced,
they are consistent and can still be significant.

Overall, the results in this section answer our first research
question, by showing that diversification performance can
be significantly improved by leveraging the most appropri-
ate intent-aware retrieval model for each query aspect. Our
model selection regime using performance-oriented classifi-
cation labels is particularly effective, significantly improv-
ing upon a uniform regime comparable to the top perform-
ing systems of the TREC 2009 and 2010 Web tracks [11,
12]. Furthermore, the consistency of our observations for
two state-of-the-art diversification approaches and accord-
ing to multiple evaluation metrics attests the robustness of
the model selection regime. In the next section, we contrast
this regime against the alternative model merging regime.

6.2 Intent-Aware Model Merging

After demonstrating the effectiveness of selecting a single
model for each query aspect, in this experiment, we investi-
gate whether deploying a model merging regime could bring
further improvements. For this investigation, we focus our
attention to the TREC Web track sub-topics as an aspect
representation. As discussed in Section 5.1, this represen-
tation allows for assessing the effectiveness of our merging
regime across the two proposed training labelling alterna-
tives, JUDG and PERF. The results based on query sugges-
tions using PERF labels lead to identical conclusions and are
hence omitted for brevity. In particular, Table 5 shows the
diversification performance of TA-Select and xQuAD under
the model merging regime (MRG), in contrast to their perfor-
mance under the model selection regime (SEL), which serves
as our baseline in this investigation. Similarly to Tables 3
and 4, percent differences between these two regimes are
shown in parentheses, alongside one of the aforementioned
symbols to denote the significance (or lack thereof) of such
differences. As discussed in Section 5.3, both regimes are
based on predictions made by an SVM classifier. In particu-
lar, the model merging regime is enabled by fitting the SVM
predictions to a logistic regression model.

From Table 5, we observe that the model merging regime
can improve upon the model selection regime in most cases,
particularly on the WT10 queries (bottom half of Table 5).
However, the merging regime can also underperform com-
pared to the selection regime, when PERF labels are used for
TA-Select and xQuAD, on WT09 and WT10, respectively.
Nevertheless, significant differences are only observed when
TA-Select is deployed under the MRG(SVM,JUDG) regime on
the WT10 queries. These results answer our second research
question, by showing that merging multiple intent-aware
models can be at least as effective as selecting the single most
likely model. Moreover, we believe that the merging regime
can offer additional benefits for an intent-aware diversifica-
tion. For one, it can help attenuate the harm of selecting
the wrong model for a particular sub-query. Additionally, it
provides a natural upper-bound for the selection regime. In-
deed, model selection is a special instance of model merging,
with a mutually exclusive probability distribution.

7. CONCLUSIONS

In this paper, we have introduced a novel intent-aware
approach for search result diversification. Given the possi-
ble intents underlying the aspects of a query, our approach
learns the appropriateness of retrieval models targeted to
each of these intents. These models are then leveraged selec-
tively or combined in a merging fashion in order to refine the
estimation of the relevance of the retrieved documents with
respect to each query aspect. In particular, our approach
builds upon a general explicit diversification model, which
makes it seamlessly deployable by existing approaches in the
literature. Indeed, thorough experiments in the context of
the TREC 2009 and 2010 Web tracks demonstrate that our
approach is general and significantly improves the effective-
ness of two state-of-the-art diversification approaches.

Our data-driven approach for learning both intent-aware
retrieval models and their appropriateness for a given aspect
opens up promising directions. In particular, the full poten-
tial of our approach could be further exploited by building
upon a larger pool of intent-aware retrieval models (e.g.,
with, say, a transactional model [4]), as well as features cap-
turing dependencies between the retrieved documents.
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