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ABSTRACT
Search result diversification is a natural approach for tack-
ling ambiguous queries. Nevertheless, not all queries are
equally ambiguous, and hence different queries could bene-
fit from different diversification strategies. A more lenient
or more aggressive diversification strategy is typically en-
coded by existing approaches as a trade-off between pro-
moting relevance or diversity in the search results. In this
paper, we propose to learn such a trade-off on a per-query
basis. In particular, we examine how the need for diversifi-
cation can be learnt for each query—given a diversification
approach and an unseen query, we predict an effective trade-
off between relevance and diversity based on similar previ-
ously seen queries. Thorough experiments using the TREC
ClueWeb09 collection show that our selective approach can
significantly outperform a uniform diversification for both
classical and state-of-the-art diversification approaches.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models

General Terms
Algorithms, Experimentation, Performance

Keywords
Web search, relevance, diversity, selective retrieval, machine
learning, feature selection

1. INTRODUCTION
Queries submitted to a Web search engine are often am-

biguous [33]. For instance, a user issuing the query ‘bond ’
could mean the financial instrument for debt security, the
classical crossover string quartet ‘Bond’, or Ian Fleming’s
secret agent character ‘James Bond’. In the absence of any
knowledge of the user’s context or preferences, a sensible ap-
proach for a search engine is to diversify the results retrieved
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for this query. By doing so, the chance that any user issu-
ing this query will find at least one relevant result to their
particular information need is maximised [10].

Intuitively, maximising the satisfaction of the population
of users issuing the same, ambiguous query involves trading
off relevance for diversity in the search results. On the one
hand, a standard relevance-oriented ranking could focus on
the most likely interpretation of the query (e.g., the most
popular). On the other hand, a diversity-oriented ranking
could also cater for other plausible query interpretations.
These two strategies could be then integrated as a bi-criteria
ranking objective for an improved performance [16].

Most of the existing diversification approaches build upon
this idea, with an interpolation parameter λ controlling the
trade-off between relevance and diversity [5, 27, 34, 38].
Typically, this trade-off is uniformly optimised so as to max-
imise the average diversification performance on a set of
training queries. However, different queries might benefit
from different diversification strategies, as not all queries
are equally ambiguous. For instance, while the query ‘bond ’
might benefit from a more aggressive diversification strat-
egy, a more lenient strategy might suffice for a less ambigu-
ous query such as ‘james bond ’. In the extreme case, a clear
query like ‘quantum of solace website’ might attain an opti-
mal performance even without any diversification. To quan-
tify this observation, Figure 1(a) shows the optimal trade-off
λ∗ for one of the diversification approaches investigated in
this work for each of the TREC 2009 Web track topics [9].
From the figure, it is clear that different queries benefit from
different trade-offs, and that any uniform choice of λ for all
queries would be suboptimal. Indeed, Figure 1(b) shows
that selectively optimising this trade-off on a per-query ba-
sis substantially outperforms a uniform optimisation regime.
That said, the key challenge becomes how to automatically
estimate such a trade-off for an unseen query.

In this paper, we hypothesise that existing diversification
approaches can be improved by selecting an appropriate di-
versification strategy on a per-query basis. In particular,
we propose to selectively diversify the results retrieved for a
given query, by predicting an effective trade-off between rel-
evance and diversity for this query. As a result, we estimate
not only whether a particular query would benefit from di-
versifying its results, but also by how much. To enable our
approach, we leverage a large pool of features from differ-
ent branches of query analysis in the literature and cast this
problem as a nearest neighbour regression task. Given a di-
versification approach and an unseen query, we estimate an
effective diversification trade-off based on the optimal trade-
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(a) Optimal trade-off per query.
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Figure 1: Optimal trade-off (a) and diversification performance (b) for the TREC 2009 Web track topics. The
baseline, non-diversified ranking is provided by the Divergence From Randomness DPH model [3]. Diversified
(both uniform and selective) re-rankings are produced using the xQuAD framework [27].

off observed for similar, previously seen queries using the
same diversification approach. To the best of our knowledge,
our approach constitutes the first attempt to tackle search
result diversification as a query-dependent ranking problem.
We thoroughly evaluate our approach in the context of the
diversity task of the TREC 2009 Web track [9], using both
a classical [5] and a state-of-the-art [27] diversification ap-
proaches as baselines. Our results show that both baselines
can be markedly improved by learning their diversification
trade-off on a per-query basis, even when compared to an
upper-bound uniform setting for this trade-off. Moreover,
we analyse the influence of the deployed features on the ac-
curacy of the predicted trade-offs and the robustness of our
approach to perturbations in the trade-off prediction.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces the related work upon which we build. Sec-
tion 3 further details our main contributions. Section 4 in-
troduces our selective search result diversification approach.
Section 5 describes the features deployed to learn the diver-
sification trade-off. Sections 6 and 7 detail the experimental
setup and the evaluation of our proposed approach, respec-
tively. Finally, Section 8 presents our conclusions.

2. BACKGROUND AND RELATED WORK
In this section, we introduce the search result diversifi-

cation problem and the most successful approaches for this
problem in the literature. In common, these approaches are
typically applied with a uniform setting across all queries.
As a step towards introducing our selective diversification
approach, we review related works on selective information
retrieval, particularly on query-dependent ranking.

2.1 Search Result Diversification
Search result diversification can be stated as an optimi-

sation problem, in which the goal is to find a ranking of
documents that together provide a complete coverage of the
aspects underlying a query, as early as possible. In its gen-
eral form, this is an NP-hard problem [1]. In practice, most
previous works on search result diversification are based on
a greedy approximation to this problem. Given a ranking

R for an ambiguous query, a re-ranking S is produced by
iteratively selecting a ‘local-best’ document from R\S. The
choice of this document is typically governed by an objective
function, which linearly combines relevance and diversity es-
timates, in order to obtain the final ranking score [16].

Relevance estimates are normally produced by standard
retrieval approaches, such as BM25 [25] or the DPH Diver-
gence From Randomness (DFR) model [3]. The key differ-
ence among existing diversification approaches lies on how
they estimate the diversity of a document. In particular,
the diversification approaches in the literature can be cate-
gorised as either implicit or explicit [29], depending on how
they account for the different aspects underlying a query.

Implicit search result diversification approaches assume
that similar documents will cover similar aspects of a query,
and should hence be demoted in the final ranking, so as to
reduce its overall redundancy. Among the approaches in this
family reported in the literature, the maximal marginal rel-
evance (MMR) method of Carbonell and Goldstein [5] is a
typical example. The general idea of the MMR method is to
trade off document similarity with respect to the query and
document dissimilarity with respect to the already selected
documents. Other implementations of this idea include the
approach of Zhai et al. [38] to model relevance and redun-
dancy within a risk minimisation framework. In particu-
lar, they promote documents with highly divergent language
models from those of the already selected documents. Chen
and Karger [8] proposed a probabilistic approach to the re-
lated problem of finding at least one relevant result for a
given query. Their approach chooses documents under the
assumption that those already chosen are not relevant to
the query. More recently, Wang and Zhu [34] proposed to
diversify a document ranking as a means to reduce the risk
of overestimating relevance. In their approach, documents
with low relevance score correlations with respect to docu-
ments selected in previous iterations are promoted.

In common, the aforementioned approaches only consider
the aspects underlying a query in an implicit manner. An
alternative approach consists of explicitly modelling these
aspects. For instance, Agrawal et al. [1] employed a classi-
fication taxonomy over queries and documents to represent



query aspects. Their approach iteratively promotes docu-
ments that share a high number of classes with the query,
while demoting those with classes already well represented
in the ranking. In a similar vein, Carterette and Chandar [7]
proposed a probabilistic approach to maximise the coverage
of the retrieved documents with respect to the aspects of
a query. In particular, they model these aspects as topics
identified from the top ranked documents. Recently, Santos
et al. [27] introduced the xQuAD probabilistic framework
for search result diversification, which explicitly represents
query aspects as ‘sub-queries’. They define diversity based
on the estimated relevance of documents to multiple sub-
queries and the relative importance of each sub-query.

In Section 7, both MMR [5] and xQuAD [27] are used
as baselines for our selective approach, as representatives of
implicit and explicit diversification approaches, respectively.
Moreover, xQuAD was the best approach in the diversity
task of the TREC 2009 Web track (Cat. B), and hence rep-
resents the state-of-the-art in search result diversification [9].

2.2 Selective Information Retrieval
Selective approaches are relatively common in other in-

formation retrieval tasks. A typical example is the iden-
tification of queries more likely to benefit from query ex-
pansion [37]. Other selective approaches deal with applying
different retrieval techniques for different queries. These ap-
proaches can be generally categorised based on whether they
rely on a hard classification of queries into predefined types.

Query type detection approaches aim to classify a query
into one of a set of target types (e.g., informational, nav-
igational, or transactional [4]), and then apply a retrieval
model specifically trained for the predicted type. For in-
stance, Kang and Kim [19] showed that different query types
can benefit from the application of different retrieval ap-
proaches. However, a major drawback of these approaches
is the limited accuracy of existing type detection mecha-
nisms. Moreover, queries of different types can often benefit
from the application of the same retrieval approach [12].

A different approach for selective information retrieval re-
lies on a softer classification. In particular, instead of clas-
sifying a query into a predefined target type, an alternative
is to identify similar queries from a training set, and then to
apply a retrieval model suitable for this set. This was the
approach taken by Geng et al. [15] to improve Web search
effectiveness. In their approach, a k-nearest neighbour clas-
sifier [2] was used to identify training queries similar to an
unseen query. A retrieval model was then learnt based on
the identified queries and applied to the unseen query. A
more general approach was proposed by Peng et al. [24].
In their work, a ranking function was chosen from a large
pool of candidate functions, based on their performance on
neighbouring training queries to an unseen query.

Inspired by these works, in this paper, we seek to learn
the diversification trade-off for an unseen query based on
the optimal trade-offs of similar training queries. However,
differently from these works, which relied on a single feature
to identify neighbouring queries, we leverage a large pool
of query features, inspired by different query analysis tasks.
To our knowledge, our work constitutes the first attempt
to tackle search result diversification as a query-dependent
ranking problem. By doing so, we recognise that different
queries may have a different level of ambiguity, and hence
demand different diversification strategies.

3. CONTRIBUTIONS OF THIS PAPER
The major contributions of this paper are:

• A novel selective approach for search result diversifi-
cation, which effectively predicts the trade-off between
relevance and diversity on a per-query basis;

• A thorough evaluation of the proposed approach in
terms of diversification effectiveness and sensitivity to
prediction perturbations;

• An examination of the usefulness of several features,
inspired by different query analysis tasks, at predicting
an effective trade-off between relevance and diversity.

4. SELECTIVE DIVERSIFICATION
As discussed in the previous sections, not all user queries

are equally ambiguous, which suggests that a one-size-fits-
all diversification strategy might be suboptimal. In order to
learn a trade-off between relevance and diversity for queries
with different levels of ambiguity, we propose a supervised
selective diversification approach. Given a diversification
approach δ and an unseen query q, our goal is to learn
an effective setting for the diversification trade-off λ, which
maximises the performance of δ according to an evaluation
metric ǫ.1 In particular, we predict this trade-off based on
the optimal trade-off observed for a set of training queries,
optimised for the same diversification approach δ, in order
to maximise the metric ǫ. Our approach is general and
can be applied to improve most existing diversification ap-
proaches (e.g., [5, 27, 34, 38]), regardless of their particular
implementation choices. In fact, we consider a diversifica-
tion approach δ as a baseline system, which ranks documents
according to an abstract model:

scoreδ(q, D) = (1 − λ) relδ(q, D) + λ divδ(q, D) (1)

where a collection of documents D is scored with respect
to a query q based on a linear combination of relevance
(relδ(q, D)) and diversity (divδ(q, D)) estimates, with the
interpolation parameter λ trading off between the two.

In Section 5, we describe the features employed to enable
our selective diversification approach. In the remainder of
this section, we detail the three major steps in this approach:
(1) labelling training queries with their optimal trade-off,
(2) learning a regression model based on the labelled queries
and a set of query features, and (3) applying the learnt model
to predict an effective trade-off for unseen queries.

4.1 Labelling Training Queries
The first step in our proposed selective diversification ap-

proach is to label training data. More precisely, our goal is
to build a set of training queries Q = {qi} with correspond-
ing labels Λδ,ǫ = {λ∗

δ,ǫ,i}. A label λ∗
δ,ǫ,i for a training query

qi corresponds to the optimal trade-off between relevance
and diversity obtained for this query using the diversifica-
tion approach δ, according to the evaluation metric ǫ.

In principle, to obtain such an optimal trade-off, we could
use any optimisation method (e.g., simulated annealing [20]).
In this work, we perform a full scan over the range of pos-
sible λ values (i.e., 0 ≤ λ ≤ 1), with steps of 0.001, and

1For instance, δ could be one of the approaches described in
Section 2.1, and ǫ could be any metric for diversity evalua-
tion, such as those described in Section 6.2.



select the best value (according to the evaluation metric ǫ)
as the label λ∗

δ,ǫ,i for the query qi. Note that this process is
performed offline, with no knowledge of unseen queries.

4.2 Learning a Regression Model
In order to learn a regression model to predict the diversifi-

cation trade-off λ for an unseen query, we could use different
numeric prediction approaches, such as linear regression or
model trees [36]. In this work, we employ a k-nearest neigh-
bour (k-NN) [2] algorithm. As an instance-based learning
approach, k-NN does not have an explicit training phase.
Instead, it stores the training data in memory and performs
an online regression for each unseen query.

The main advantage of such a lazy learning approach is
that a different and potentially more targeted learning func-
tion is estimated based on the training neighbourhood of an
unseen query, rather than on the entire training data. This
reduces the complexity of the learning process by exploiting
the locality of the data [15, 36]. Additionally, k-NN does not
make strong assumptions about the underlying data distri-
bution, as other regression approaches do [2].

4.3 Predicting the Diversification Trade-Off
During the online query processing, our goal is to predict

an effective trade-off λ for an unseen query q based on a
learnt regression model. Since k-NN is a lazy approach, no
explicit model is actually learnt a priori, and hence most of
the work is conducted online. In particular, the predicted
trade-off λ for the test query q is set as the mean of the λ∗

i

values of the k nearest neighbouring training queries to q:

λ =
1

k

X

i|qi∈Nk(q)

λ
∗
i (2)

where Nk(q) is a set comprising the k closest training queries
to q in the space of the considered features, according to a
distance function, typically the Euclidian distance.

Despite its simplicity and effectiveness, two main concerns
arise when employing an instance-based learning approach
such as k-NN. Firstly, the cost of prediction can be signifi-
cant, particularly when a large number of training instances
is available. In our experiments, we deploy a linear near-
est neighbour search algorithm, which requires O(dn) time,
considering a set of n training queries in a d-dimensional
space [36]. In a real deployment of our approach, the search-
ing time can be dramatically reduced with the use of algo-
rithms based on more sophisticated indexing structures to
store the training queries, such as ball trees [22]. The second
concern related to instance-based learning is the dimension-
ality of the feature space. In particular, k-NN considers all
instance features when searching for the nearest neighbours.
When a true neighbour shares only a few common features
with an unseen query, they may be considered far from each
other in light of the entire feature space, potentially com-
promising the accuracy of the prediction [36]. To tackle this
issue, we perform a feature selection ahead of the prediction
step, as described in Section 6.4.

5. QUERY FEATURES
A pool of meaningful features is crucial for the effective-

ness of any learning process. As the goal of our particular
task is to learn a trade-off between relevance and diversity
for a given query, a natural first direction is to look for fea-

tures that capture the ambiguity of this query. Intuitively,
we would expect unambiguous queries to benefit more from a
relevance-oriented ranking strategy, while ambiguous queries
should benefit more from a diversity-oriented strategy. How-
ever, the diversification trade-off depends not only on the
ambiguity of a query, but also on how a diversification ap-
proach δ tackles such ambiguity, through its particular esti-
mations of relevance (relδ(q, D)) and diversity (divδ(q, D)).
For this reason, we also consider non-ambiguity-related fea-
tures for predicting the diversification trade-off.

In this work, we leverage a total of 953 query features,
organised in 33 different classes, in order to predict the di-
versification trade-off for an unseen query. In particular,
these features are extracted from different sources, including
the query itself, the top documents retrieved for this query
in a target collection, and a query log. Moreover, these
features are inspired by five different query analysis tasks,
including query concept identification (QCI), query type de-
tection (QTD), query performance prediction (QPP), query
log mining (QLM), and query topic classification (QTC).
Table 1 summarises all features used in this work. In the
remainder of this section, we describe each of them.

5.1 Query Concept Identification (QCI)
A first sign of ambiguity is present at the word level [26].

For instance, a query might contain multiple concepts or
named entities, possibly representing a complex information
need with multiple intents. Alternatively, a single query con-
cept can have multiple meanings according to a particular
source, such as a dictionary or an encyclopedia. To cap-
ture these intuitions, we propose two query features based
on the identification of query concepts. The first of these
counts the number of named entities in the query. In par-
ticular, we employ an efficient named-entity recognition ap-
proach [28], backed up by a dictionary of entity names built
from DBPedia 3.3,2 with additional person names from the
1990 US Census.3 In total, we identify entities of four types:
people, organisations, products, and locations.

Our second query feature focuses on occurrences of partic-
ularly ambiguous query terms, namely, acronyms. As short
abbreviations, acronyms typically have multiple interpre-
tations. For instance, ‘ACM’ has 174 different definitions
according to all-acronyms.com, including ‘Association for
Computing Machinery’, ‘Air Cycle Machine’, and ‘Air Chief-
Marshall’. Instead of deploying sophisticated natural lan-
guage processing techniques for acronym identification, we
simply compute the number of interpretations returned by
all-acronyms.com for single-term queries. In particular, we
assume that acronyms occurring in multi-term queries are
disambiguated by the additional terms.

Besides features computed directly from an unseen query,
we consider ambiguity-related features based on Wikipedia4

disambiguation pages. In particular, a Wikipedia disam-
biguation page represents an ambiguous concept and its as-
sociated senses or interpretations [26]. Based on a ranking
of Wikipedia articles for the query, we compute two fea-
tures: the total number of disambiguation pages retrieved,
and the number of disambiguating senses associated with
each retrieved disambiguation page.

2http://dbpedia.org
3http://www.census.gov
4http://en.wikipedia.org



source task class description total
1 query QCI AcronymSenses Number of acronym senses 1
2 query QPP AvICTF [18] Pre-retrieval performance predictor 1
3 query QPP AvIDF [13] Pre-retrieval performance predictor 1
4 query QPP AvPMI [6] Pre-retrieval performance predictor 1
5 query QPP EnIDF [6] Pre-retrieval performance predictor 1
6 query QCI EntityCount Number of named entities in the query 4
7 query QPP Gamma1 [18] Pre-retrieval performance predictor 1
8 query QPP Gamma2 [18] Pre-retrieval performance predictor 1
9 query QPP TermCount Number of unique terms 1

10 query QPP TokenCount Number of tokens 1
11 documents QPP ClarityScore [13] Post-retrieval performance predictor 50
12 documents QTD DomainDistribution Number of documents per domain 15
13 documents QTC DocEntityCount Number of retrieved entities 135
14 documents QTC DocEntityEntropy Entity entropy of centroid document 150
15 documents QTC DocEntityPairwiseCosine Entity distance over pairs of top documents 330
16 documents QTD HomePage Whether results include a homepage 2
17 documents QTD HostDistribution Number of documents per host 15
18 documents QTD MaximumScoreIncrement Maximum difference between any two scores 2
19 documents QPP QueryDifficulty [6] Post-retrieval performance predictor 20
20 documents QPP QueryFeedback [6] Post-retrieval performance predictor 20
21 documents QTD URLTypeDistribution Number of URL components per document 20
22 documents QCI WPDisambCount Number of disambiguation pages retrieved 20
23 documents QCI WPDisambSenses [26] Number of disambiguation senses per document 56
24 documents QTC WPCategoryCount Number of retrieved categories 18
25 documents QTC WPCategoryEntropy Category entropy of centroid document 18
26 documents QTC WPPairwiseCosine Categorical distance over pairs of top documents 54
27 query log QLM ClickCount Number of clicks 3
28 query log QLM ClickEntropy [11] Click entropy at the URL level 1
29 query log QLM HostEntropy [35] Click entropy at the host level 1
30 query log QLM QueryFrequency Number of occurrences 1
31 query log QLM ReformulationCount [11] Number of reformulations in a session 3
32 query log QLM ResultCount Number of displayed results in a session 3
33 query log QLM SessionDuration Session duration in seconds 3
TOTAL 953

Table 1: All query features used in this work.

5.2 Query Type Detection (QTD)
Navigational queries are usually less ambiguous than in-

formational ones, which suggests that useful query type de-
tection features might also be useful for predicting query
ambiguity [19]. With this in mind, we leverage several query
type detection features proposed in the literature in our
learning task. These include the distribution of host names,
domain names, and other URL fragments among the top
retrieved results for a query, as well as the presence of a
homepage among these results. Additionally, we consider
the maximum difference in relevance scores between any two
retrieved results as a strong indicator of the query type [32].
This feature captures the intuition that relevance scores tend
to drop quickly for navigational queries, as typically only a
few (often one) documents are relevant for such queries.

5.3 Query Performance Prediction (QPP)
As previously discussed in this section, our approach con-

siders a baseline diversification approach δ as a black-box
system with relevance and diversity estimates. Since an op-
timal diversification trade-off clearly depends on the perfor-
mance of these estimates, a promising direction is to lever-
age query performance prediction features [6]. For instance,
query ambiguity often correlates negatively with query per-
formance [13]. In this work, we employ a range of both
pre-retrieval and post-retrieval predictors. Pre-retrieval pre-
dictors depend solely on the query, and estimate its perfor-
mance based on statistics derived from the target collection,
such as the document frequency of individual query terms
or the pointwise mutual information of pairs of query terms.

Post-retrieval predictors, in turn, are based on the top re-
trieved results for a given query [17]. For instance, they
can estimate the query performance based on how cohesive
these results are, according to their language models [13] or
relevance models built from them [39].

5.4 Query Log Mining (QLM)
Another promising direction for inferring the ambiguity of

a query is to observe the past usage of this query in a query
log [30]. Inspired by previous research on query log mining
for ambiguity detection, we deploy a number of additional
features. For instance, queries often clicked for a single doc-
ument are intuitively less ambiguous than queries with clicks
spread over different documents. We capture this intuition
by computing the entropy of user clicks [11, 35], at both
the result URL and host levels. Additionally, for each query
session, we compute the total number of results displayed to
the user, the total duration of the session in seconds, and the
total number of query reformulations performed during the
session [11]. Here, the intuition is that ambiguous queries
will demand longer user interactions comparatively to clear,
unambiguous queries. Finally, we also consider other basic
features such as the raw frequency of the query in a query
log and the total number of clicks it received.

Query log features are computed from the 15-million query
MSN Search Spring 2006 Query Log, released in the context
of the 2009 Workshop on Web Search Click Data.5

5http://research.microsoft.com/en-us/um/people/
nickcr/wscd09/



5.5 Query Topic Classification (QTC)
To further refine the prediction of the diversification trade-

off for an unseen query, we consider more specialised fea-
tures, which capture the distribution of topics among the
documents retrieved for this query. These include the raw
number of topics represented in the top retrieved results for
the query, the pairwise ‘topic’ distance between any two re-
trieved documents for the query, and the ‘topic’ entropy of
the centroid of all retrieved documents [31].

In this work, we propose two alternatives to represent doc-
uments as vectors over topics. The first of these is inspired
by traditional text classification. However, to avoid hav-
ing to classify a large number of search results into a set
of predefined categories, we leverage the category hierarchy
of Wikipedia. In particular, given a ranking of Wikipedia
articles retrieved for the query, we represent each article as
a vector over 12 top-level categories. These are Wikipedia
equivalents to the top-level categories in the Open Direc-
tory Project (ODP),6 except for the ‘Adult’ and ‘Shopping’
categories, not present in Wikipedia. In order to estimate
the classification of each retrieved Wikipedia article into one
of these top-level categories, we compute the shortest-path
distance between any of the original categories associated
with the article and each of the target top-level categories
in the Wikipedia category hierarchy. Using these top-level
categories rather than the original (more specific) ones re-
duces the dimensionality of the resulting vectors, and their
sparsity when estimating vector distances.

Besides using Wikipedia categories, our second alterna-
tive investigates the usefulness of named entities as topic
representations. In particular, our intuition is that docu-
ments sharing the same entities tend to be more similar,
in which case the query for which they are retrieved tends
to be less ambiguous. As in Section 5.1, to identify en-
tity occurrences in the top retrieved documents, we rely on
a dictionary-based approach [28], based on named entities
from DBPedia. By representing each retrieved document as
a vector over the entities it contains, we derive analogous
features to those generated using top-level Wikipedia cate-
gories, but based on an alternative representation of topics.

5.6 Post-Processing
As a further step for data preparation, we produce differ-

ent variants of most of the features described in this section.
In particular, document features are computed based on 5
different retrieval approaches: BM25 [25], the DPH Diver-
gence From Randomness (DFR) model [3], and the Bing,
Google, and Yahoo! Web search engines.7 Additionally,
document features are computed at 10 different rank cutoffs:
1, 2, 3, 5, 10, 20, 50, 100, 500, and 1000. Moreover, distribu-
tional features (e.g., the number of documents per domain or
the pairwise distance between any two retrieved documents)
are summarised using up to four different statistics: mean,
standard deviation, median, and maximum. Finally, fea-
tures with no discriminative power across training instances
are discarded, and the scores of the remaining features are
normalised to lie in the interval [0,1].

6http://www.dmoz.org
7For Bing, Google, and Yahoo!, documents not present in
our target test collection are discarded, and relevance scores
are assumed to be a linear function of the logarithm of the
rank position of the remaining documents.

6. EXPERIMENTAL SETUP
In this section, we describe the setup for the experiments

conducted in Section 7. In particular, these experiments aim
to answer the following research questions:

1. Can we effectively diversify the results for a given query
by learning its diversification trade-off?

2. What features are effective predictors for the diversifi-
cation trade-off?

3. How robust is our selective approach to perturbations
in the trade-off prediction accuracy?

In the remainder of this section, we detail the test col-
lection, topics, and evaluation metrics used in our experi-
ments. Additionally, we describe the baseline diversification
approaches and the different learning regimes considered in
the evaluation of our selective diversification approach.

6.1 Collection and Topics
Our analysis is conducted within the standard experimen-

tation paradigm provided by the diversity task of the TREC
2009 Web track [9]. In particular, this task comprises a
test collection of 50 topics, which is currently the only pub-
licly available test bed for diversity evaluation on a Web
setting. For each topic, from 3 to 8 sub-topics were iden-
tified by TREC assessors as representing different aspects
of the initial topic, with relevance assessments conducted at
the sub-topic level. As the underlying document collection,
we consider the category-B ClueWeb09 dataset,8 as used in
the TREC 2009 Web track. In particular, this collection
comprises 50 million English documents. We index it us-
ing the Terrier platform [23],9 with Porter’s stemmer and
standard English stopwords removal.

6.2 Evaluation Metrics
Our experiments use the official evaluation metrics in the

diversity task of the TREC 2009 Web track [9]. In order to
label training queries, we use α-NDCG@10 [10] as the tar-
get metric ǫ within the optimisation procedure described in
Section 4.1. The α-normalised discounted cumulative gain
(α-NDCG) metric balances relevance and diversity through
the tuning parameter α. The larger the value of α, the
more diversity is rewarded. Following the standard evalu-
ation practice in TREC 2009, we compute α-NDCG with
α = 0.5, so as to reward relevance and diversity equally.

Besides α-NDCG, the diversification performance of our
approach is also reported in terms of IA-P [1], after a 5-fold
cross validation on the TREC 2009 Web track topics. Intent-
aware precision (IA-P) averages the traditional notion of
precision across different sub-topics, potentially weighted by
the relative importance of these sub-topics. Once again,
following the standard TREC evaluation, we compute IA-P
by considering all sub-topics as equally important.

6.3 Retrieval Baselines
We use MMR [5] and xQuAD [27] as baselines, represent-

ing the two broad families of diversification approaches in-
troduced in Section 2. For MMR, we use the cosine distance
as the similarity metric. For xQuAD, to isolate the impact

8http://boston.lti.cs.cmu.edu/Data/clueweb09/
9http://www.terrier.org



of sub-query generation, we use the official TREC 2009 Web
track sub-topics as sub-queries, weighted uniformly.10

In order to test the consistency of our evaluation results,
these diversification baselines are deployed on top of two dif-
ferent ad-hoc retrieval approaches: BM25 [25] and DPH [3].
For efficiency reasons, MMR is applied on the top 100 doc-
uments returned by each of these approaches.

6.4 Training Regimes
In our evaluation, five different training regimes are con-

sidered in order to set the parameter λ to control the diver-
sification trade-off for both MMR and xQuAD:

1. Uni(base): a baseline uniform diversification regime,
with a single λ value learnt for all queries in each fold
through a 5-fold cross validation.

2. Uni(oracle): an upper-bound uniform diversification
regime, with a single λ value selected to maximise the
average performance across all queries.

3. Sel(rand): a baseline selective diversification regime,
with a different λ value randomly sampled from the
interval [0,1] on a per-query basis.

4. Sel(oracle): an upper-bound selective diversifica-
tion regime, with a different λ value selected on a per-
query basis, so as to maximise the performance of each
query individually.

5. Sel(k-nn): a selective diversification regime based on
our proposed approach, with a different λ value learnt
for each query through a 5-fold cross validation.

To set the k parameter for k-NN, a leave-one-out cross-
validation is performed, by minimising mean absolute error
(MAE) [36]. Additionally, given the large number of features
described in Section 5, we investigate the impact of different
feature selection mechanisms for the Sel(k-nn) regime. In
particular, besides a simple variant with no feature selection
applied (Sel(k-nn,nofs)), we deploy two standard feature
selection techniques:

• Sel(k-nn,pca) performs a principal component analy-
sis (PCA) in order to reduce the dimensionality of the
feature space [36]. Note that this is an unsupervised
process, and hence no training queries are required.

• Sel(k-nn,bfs) performs a best-first search (BFS) over
the space of all candidate feature combinations [21]. In
particular, to try to avoid converging on a local maxi-
mum, we allow negative improvements in the search for
the next feature to be added to the current best com-
bination. As a result, our stopping criterion becomes
the maximum number of features to be selected: 100.

In the next section, we evaluate our selective approach—
using these alternative feature selection techniques—in com-
parison to the uniform training regimes at predicting the
diversification trade-off for MMR and xQuAD.

10For effective alternatives on generating sub-queries and es-
timating their relative importance, please refer to [27, 29].

7. EXPERIMENTAL EVALUATION
In this section, we thoroughly evaluate our proposed ap-

proach for selective search result diversification. In particu-
lar, in Section 7.1, we assess the effectiveness of our approach
for improving the diversification performance of a classical
and a state-of-the-art diversification baselines: MMR and
xQuAD. In Section 7.2, we analyse the suitability of different
groups of features for predicting an effective diversification
trade-off. Finally, in Section 7.3, we further investigate the
robustness of our approach based on the impact of random
perturbations on the prediction of this trade-off.

7.1 Diversification Effectiveness
In this experiment, we aim to answer our first research

question, namely, whether learning a different diversifica-
tion trade-off for different queries results in improved per-
formance. To investigate this, we evaluate the performance
of two diversification approaches as baselines for our selec-
tive diversification approach. In particular, Tables 2 and 3
show the diversification performance of MMR and xQuAD,
respectively, under the training regimes described in the
previous section. These include Uni(base) as a baseline
uniform diversification regime, and Sel(rand) as a sanity
check for the performance of our proposed selective diversi-
fication approach using k-NN. Additionally, Uni(oracle)
and Sel(oracle) provide upper-bound performances for
both a uniform and a selective diversification regime, re-
spectively. Diversification performance is given by α-NDCG
and IA-P at different rank cutoffs. The best among the
oracle and non-oracle regimes are highlighted in bold. Sig-
nificance with respect to the Uni(base) regime is given by
the Wilcoxon signed-rank matched-pairs test. In particular,
△ and ▽ denote a significant increase or decrease with re-
spect to Uni(base) with p < 0.05, while N and H denote
significant increases or decreases with p < 0.01.

From Table 2, based on the performance of our approach
using MMR as a baseline, we first observe that Sel(k-nn)
improves over Uni(base) in all cases for BM25+MMR, and
in most cases for DPH+MMR, often significantly. This at-
tests the effectiveness of our selective approach when com-
pared to learning a single diversification trade-off for all
queries. Moreover, Sel(k-nn) significantly improves over
Sel(rand) on all settings. This attests the non-triviality
of our results. Indeed, randomly assigning the diversifica-
tion trade-off for MMR performs poorly, which shows the
sensitivity of this approach to the accuracy of the learning
process. Comparing the different variants of our approach,
we note that feature selection plays an important role in the
identification of an effective diversification trade-off, partic-
ularly when such a large set of features as the one described
in Section 5 is employed. In particular, Sel(k-nn,pca),
our unsupervised approach based on principal component
analysis, brings improvements over no feature selection for
most settings. Further improvements are observed when a
greedy best-first search feature selection approach is used.
Indeed, the performance of Sel(k-nn,bfs) is comparable to
the upper-bound performance attained by a uniform diver-
sification, as given by the Uni(oracle) regime.

From Table 3, additional observations can be made about
the performance of our approach using xQuAD as a baseline.
Firstly, Sel(k-nn) continues to improve over Uni(base).
This further confirms our hypothesis that a selective diver-
sification mechanism is effective compared to a uniform di-



α-NDCG IA-P
@5 @10 @100 @5 @10 @100

BM25+MMR
Uni(base) 0.0918 0.1199 0.2132 0.0448 0.0485 0.0373
Sel(rand) 0.0559 0.0864 0.1770 0.0260 0.0337 0.0266▽

Sel(k-nn,nofs) 0.1354 0.1610 0.2691 0.0641 0.0624△ 0.0541△

Sel(k-nn,pca) 0.1391△ 0.1635 0.2669 0.0662△ 0.0641N
0.0526

△

Sel(k-nn,bfs) 0.1604
N

0.1981
N

0.2919
N

0.0729
N

0.0746
N 0.0516N

Uni(oracle) 0.1619N 0.1897N 0.2943N 0.0760N 0.0708N 0.0575N

Sel(oracle) 0.1739
N

0.2184
N

0.2997
N

0.0787
N

0.0813
N

0.0518
N

DPH+MMR
Uni(base) 0.1778 0.1927 0.2902 0.0957 0.0902 0.0586
Sel(rand) 0.0571H 0.0685H 0.1625H 0.0306H 0.0260H 0.0231H

Sel(k-nn,nofs) 0.1875 0.1974 0.2875 0.1017 0.0960 0.0572
Sel(k-nn,pca) 0.1854 0.2008 0.2930 0.1007 0.0993 0.0560
Sel(k-nn,bfs) 0.1983 0.2162

△
0.3027 0.1090 0.1082

△
0.0588

Uni(oracle) 0.1983 0.2121 0.3042△ 0.1090 0.1064 0.0621
N

Sel(oracle) 0.2047
△

0.2232
N

0.3058 0.1115
△

0.1091
△ 0.0577

Table 2: Diversification performance of MMR under different training regimes.

α-NDCG IA-P
@5 @10 @100 @5 @10 @100

BM25+xQuAD
Uni(base) 0.2209 0.2483 0.3416 0.1038 0.0961 0.0599
Sel(rand) 0.2146 0.2383 0.3304▽ 0.0983 0.0891 0.0563H

Sel(k-nn,nofs) 0.2145 0.2350▽ 0.3327 0.0977 0.0862 0.0578▽

Sel(k-nn,pca) 0.2194 0.2405 0.3418 0.0959 0.0887 0.0592
Sel(k-nn,bfs) 0.2579 0.2834 0.3716 0.1184 0.1128 0.0602

Uni(oracle) 0.2314 0.2604 0.3457 0.1116 0.1059 0.0611
Sel(oracle) 0.3040 0.3162 0.3977 0.1335 0.1103 0.0595

DPH+xQuAD
Uni(base) 0.2569 0.2739 0.3637 0.1374 0.1154 0.0609
Sel(rand) 0.2396 0.2577 0.3458H 0.1158 0.0995▽ 0.0572H

Sel(k-nn,nofs) 0.2543 0.2670 0.3546 0.1403 0.1220 0.0634

Sel(k-nn,pca) 0.2458 0.2758 0.3639 0.1234 0.1130 0.0612
Sel(k-nn,bfs) 0.2653 0.2833 0.3636 0.1349 0.1172 0.0602
Uni(oracle) 0.2585 0.2785 0.3641 0.1400 0.1177 0.0611
Sel(oracle) 0.3314

N
0.3520

N
0.4122

N
0.1633

△
0.1488

N
0.0634

Table 3: Diversification performance of xQuAD under different training regimes.

versification, even for a state-of-the-art diversification base-
line such as xQuAD. Feature selection plays an even more
important role for xQuAD compared to MMR. In particu-
lar, while using all available features (the Sel(k-nn,nofs)
variant) hardly improves over a random assignment of the
diversification trade-off for BM25+xQuAD, performing fea-
ture selection can bring substantial improvements. Indeed,
Sel(k-nn,bfs) can outperform even an oracle uniform as-
signment of the diversification trade-off for BM25+xQuAD.
For DPH+xQuAD, both Sel(k-nn,pca) and Sel(k-nn,bfs)
improve over the oracle uniform diversification. Comparing
the Sel(rand) regime in Tables 2 and 3 reveals an inter-
esting behaviour. While the performance of MMR is highly
sensitive to a random assignment of the diversification trade-
off, xQuAD still performs relatively well in this scenario.
Nonetheless, such a resilient behaviour from xQuAD does
not mean it would benefit less from our selective approach.
Indeed, the upper-bound performance of Sel(oracle) gives
encouraging room for further improvements.

Recalling our first research question, the results in Ta-
bles 2 and 3 attest the effectiveness of our selective diversi-
fication approach, with significant improvements over a uni-
form diversification across different experimental settings.

7.2 Feature Group Performance
The results in Section 7.1 are particularly promising given

the simple techniques we deployed to select a subset of effec-
tive features from the large pool used in this work. Although
automatically finding an optimal subset of these features is
beyond the scope of this paper, in this section, we investi-
gate the predictive power of different groups of features. In
particular, we aim to answer our second research question,
concerning the usefulness of different features for learning
the diversification trade-off for an unseen query.

Inspired by our proposed classification of the features de-
scribed in Section 5, we analyse the performance of our selec-
tive diversification approach using features from five differ-
ent groups: query concept identification (QCI), query per-
formance prediction (QPP), query topic classification (QTC),
query type detection (QTD), and query log mining (QLM).
In particular, Table 4 shows the performance of our selec-
tive diversification approach for both MMR and xQuAD,
with features grouped according to the aforementioned clas-
sification. In each row, only features of the corresponding
category are selected (e.g., Sel(k-nn,qci) comprises only
query concept identification features). Sel(k-nn,nofs) pro-
vides a baseline performance, with no feature selection.



MMR xQuAD
BM25 DPH BM25 DPH

Sel(k-NN,nofs) 0.1610 0.1974 0.2350 0.2670
Sel(k-NN,qci) 0.1656 0.1591 0.2393 0.2611
Sel(k-NN,qlm) 0.1743 0.1824 0.2399 0.2463
Sel(k-NN,qpp) 0.1684 0.1703 0.2447 0.2574
Sel(k-NN,qtc) 0.1721 0.2030 0.2384 0.2844

Sel(k-NN,qtd) 0.1640 0.1819 0.2511 0.2490
Pearson’s ρ 0.53 -0.52

Table 4: Per-feature group diversification perfor-
mance in terms of α-NDCG@10.

From Table 4, compared to using all features (i.e., Sel(k-
NN,nofs)), we first observe that selecting features accord-
ing to any of the proposed categories improves the perfor-
mance of our selective approach for both MMR and xQuAD
on top of BM25. However, when DPH is used as the un-
derlying weighting model, only the query type classification
features (QTC) provide an effective feature selection. In-
deed, and recalling our second research question, our QTC
features constitute the most robust group of all features con-
sidered in this work, with consistent improvements across
all settings. This observation also agrees with the output
of our greedy best-first search feature selection approach.
In particular, DocEntityCount, DocEntityEntropy, DocEn-
tityPairwiseCosine, and WPCategoryCount are among the
most useful features for predicting the diversification trade-
off. Other features selected through best-first search include
two query concept identification (QCI) features (WPDisam-
bCount and WPDisambSenses), one query type detection
(QTD) feature (HostDistribution), and one query perfor-
mance prediction (QPP) feature (QueryFeedback). In com-
mon, all of these features are computed from the documents
retrieved for a query. This suggests that features derived
from the query itself or a query log are not as effective pre-
dictors for the diversification trade-off. In the latter case,
this might be due to the sparsity of clicks and reformula-
tions for the considered test queries in the MSN query log.

Finally, another interesting observation relates to how dif-
ferent diversification approaches leverage different features.
While MMR shows similar performances across different fea-
ture groups using either BM25 or DPH (ρ = 0.53), the most
useful features for xQuAD do not agree across these two
weighting models (ρ = −0.52). Although anecdotal, these
observations illustrate the challenge of selecting a suitable
subset of features for learning an effective diversification
trade-off for different diversification approaches.

7.3 Prediction Robustness
In the previous sections, we have shown that our approach

can be effective even when deploying relatively simple fea-
ture selection techniques to reduce the dimensionality of our
feature space. In this section, we investigate the reasons for
such a robust behaviour. More precisely, we aim to answer
our third research question, regarding the sensitivity of our
approach to perturbations in the underlying regression accu-
racy. To do so, we propose a simple perturbation criterion,
which introduces randomness in the regression process. In
particular, we predict a diversification trade-off λ for a train-
ing query q according to a linear combination:

λ = (1 − φ)λ∗ + φλrand (3)

where λ∗ is the optimal trade-off for the training query q,
obtained as described in Section 4.1, and λrand is a random
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Figure 2: Diversification performance across differ-
ent levels of prediction perturbation.

number in the interval [0,1]. The interpolation parameter φ

represents the perturbation level. When φ = 0, we have a
perfect prediction accuracy, equivalent to our upper-bound
regime Sel(oracle). On the other extreme, when φ = 1,
we have a completely random prediction accuracy, equiv-
alent to our baseline regime Sel(rand). Figure 2 shows
the diversification performance of Sel(oracle) in terms of
α-NDCG@10 for different levels of prediction perturbation,
using DPH+xQuAD. The Uni(oracle) regime is also in-
cluded as an upper-bound uniform diversification approach.

From Figure 2, we make two main observations. Firstly,
our selective diversification approach is very robust to per-
turbations in regression accuracy, outperforming an upper-
bound uniform diversification even with up to 50% of accu-
racy perturbation, which answers our third research ques-
tion. This is remarkable, and confirms the effectiveness of
our approach, despite the inherent difficulty of the predic-
tion task. A second observation relates to how close to the
upper-bound performance we can expect to be in a realistic
scenario. From Figure 2, we can observe that gradual im-
provements are attained as the level of perturbation drops.
However, after a certain level, further improvements seem
unlikely, as they would require a near-perfect regression ac-
curacy. In this example, we could expect the upper-bound
performance of DPH+xQuAD in terms of α-NDCG@10 to
lie in between 0.31 and 0.32 in a more realistic scenario.

8. CONCLUSIONS
In this paper, we have introduced a novel selective ap-

proach for search result diversification. In particular, our
approach predicts not only whether a particular query could
benefit from diversification, but also to what extent its re-
sults should be diversified. Our thorough experiments have
shown that our approach is effective and can significantly
outperform a uniform diversification strategy.

By improving a classical and a state-of-the-art diversifica-
tion approaches from rather distinct families, we have shown
that our approach is general and agnostic to any particular
baseline diversification approach. Moreover, by deploying a
large pool of features while relying on relatively simple fea-
ture selection techniques, we have shown that our approach
is also robust to perturbations in the prediction accuracy.

While feature selection is a challenging research problem
in itself [14], given the high dimensionality of the learning
task tackled in this work and the limited amount of training
queries we had available, our results are even more promis-
ing. In fact, we believe we have only scratched the surface of
an emerging field. As illustrated by the performance of an
oracle selective diversification regime, substantial improve-



ments in diversification performance should be possible by
deploying even more effective and sophisticated feature se-
lection and learning techniques.
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