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Abstract. The application of query-independent features, such as
PageRank, can boost the retrieval effectiveness of a Web Information Re-
trieval (IR) system. In some previous works, a query-independent feature
is uniformly applied to all queries. Other works predict the most useful
feature based on the query type. However, the accuracy of the current
query type prediction methods is not high. In this paper, we investigate
a novel approach that applies the most appropriate query-independent
feature on a per-query basis, and does not require the knowledge of the
query type. The approach is based on an estimate of the divergence be-
tween the retrieved document scores’ distributions prior to, and after the
integration of a query-independent feature. We evaluate our approach
on the TREC .GOV Web test collection and the mixed topic sets from
TREC 2003 & 2004 Web search tasks. Our experimental results demon-
strate that the selective application of a query-independent feature on
a per-query basis is very effective and robust. In particular, it outper-
forms a query type prediction-based method, even when this method is
simulated with a 100% query type prediction accuracy.

1 Introduction

Various previous studies have shown that the application of query-independent
features, such as PageRank [1] and URL depth [6], can enhance the retrieval
effectiveness of a Web IR system [2,5,12]. Most of these studies have mainly
focussed on the uniform application of a query-independent feature to all queries.
Others use the type of the query such as Homepage finding, Named Page finding,
or Topic Distillation, to predict those query-independent features that are most
useful for retrieval. For example, the URL type feature is usually effective for
the Homepage finding queries [6,8]. In this context, one possible solution is to
predict the query type and then apply the most appropriate query-independent
feature based on the predicted query type.

However, in a real IR environment, users do not mention the type of their
submitted queries. Moreover, the query type prediction is not quite accurate
even when it involves binary selections, according to the TREC 2004 Web Track
overview [4]. For example, the highest accuracy of query type prediction between
Homepage and Named Page finding topics in [4] is 68%.
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In this paper, we present a novel method for selecting the most appropri-
ate query-independent feature on a per-query basis, which does not require
the knowledge of the query type. For each query and its corresponding top re-
trieved documents, we propose to estimate the divergence between the retrieved
document scores’ distributions prior to, and after the integration of the query-
independent feature. We then use our proposed decision mechanism, which is
based on the distribution of the estimated divergence scores, to selectively apply
the most appropriate query-independent feature.

We conduct our experiments on the standard .GOV Web test collection [3].
In order to test our proposed method on a big enough dataset, we mix the
topic sets from TREC 2003 & 2004 Web Tracks and separate the dataset into
three folds of equal size. We iteratively test our feature selection method on
one fold after training on the remaining two folds. Moreover, to build a strong
retrieval baseline system, we use a field-based model, namely the PL2F document
weighting model. In addition, we experiment with the three query-independent
features: PageRank, URL depth and Click Distance.

The objectives of this paper are twofold. Firstly, we examine how important
it is to selectively apply query-independent feature on a per-query basis in Web
IR. Secondly, we test how effective our proposed method is for the selective
application of a query-independent feature on a per-query basis. In particular,
we test how effective our proposed method is when the number of candidate
features changes. We also show that our approach is more effective than the
query type prediction-based method (denoted as QTP), even when this method
is simulated with a 100% query type prediction accuracy.

The remainder of this paper is organised as follows. In Section 2, we present
the field-based document weighting model, which will be used in this work to
rank documents. Section 3 introduces the query-independent features used in this
paper, and how they are integrated into a document weighting model. Section 4
describes our proposed method for selectively applying a query-independent fea-
ture. We present the experimental setting in Section 5, and analyse the experi-
mental results in Section 6. Finally, we conclude the work in Section 7.

2 Divergence from Randomness Model

Many studies have shown that the overall retrieval performance of a Web IR
system can be enhanced when the document structure (or fields), such as the
body, the title, and the anchor text of its incoming hyperlinks [14,17]. In par-
ticular, Robertson et al. [16] showed improved retrieval effectiveness in TREC
Web search tasks when the contribution of each field to the document ranking
was controlled by the use of weights.

Therefore, in order to obtain a strong baseline system, we apply a field-based
Divergence From Randomness (DFR) weighting model. In particular, we use
the PL2F field-based model [10], which was shown to be effective on the TREC
Web test collections [15]. Using the DFR PL2F model, the relevance score of a
document D for a query Q is given by:
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score(D, Q) =
∑

t∈Q

qtw · 1
tfn + 1

(
tfn · log2

tfn

λ
(1)

+(λ − tfn) · log2 e + 0.5 · log2(2π · tfn)
)

where λ is the mean and variance of a Poisson distribution, given by λ = F/N ;
F is the frequency of the query term t in the whole collection, and N is the
number of documents in the whole collection. The query term weight qtw is
given by qtf/qtfmax; qtf is the query term frequency; qtfmax is the maximum
query term frequency among the query terms.

In PL2F, tfn corresponds to the weighted sum of the normalised term fre-
quencies tff for each used field f , known as Normalisation 2F [10]:

tfn =
∑

f

(
wf · tff · log2(1 + cf · avg lf

lf
)
)

, (cf > 0) (2)

where tff is the frequency of term t in field f of document D; lf is the length
in tokens of document D in field f , and avg lf is the average length of the field
across all documents; cf is a hyper-parameter for each field, which controls the
term frequency normalisation; the importance of the term occurring in field f
is controlled by the weight wf . The values of these parameters are obtained by
training as will be explained in Section 5.

3 Query-Independent Features

We use three widely used query-independent features, namely PageRank, URL
depth and Click Distance, which have been shown to particularly enhance the
retrieval performance of a Web IR system on some of the TREC Web search
tasks [5,8]. For the integration of a query-independent feature into a document
weighting scheme, we use the FLOE method [5], which has been shown to be
an effective approach for transforming a query-independent feature score into a
document relevance score.

3.1 PageRank (PR)

Documents in the Web are connected through hyper-links. A hyper-link is a con-
nection between a source and a target document. There is a simple assumption
that a hyper-link from document A to document B stipulates that the document
A’s author considers document B to be valuable. A high number of incoming
links often indicates that many documents’ authors consider the given document
to be of a high quality. PageRank [1] extends this idea by not only counting the
number of incoming links to a document, but also by taking the quality of in-
coming links into account. The PageRank feature score of a given document is
computed as follows:

Score(D)PR = (1 − λPR) + λPR ·
n∑

i=1

Score(Di)PR

c(Di)
(3)
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where Di is a Web document linking to page D, c(Di) is the number of outgoing
links from document Di, and λPR is a damping factor. In this paper, we use the
default setting λPR = 0.85 [1].

3.2 URL Depth (UD)

A Uniform Resource Locator (URL), which contains a string of symbols, de-
fines the unique location of a document on the Web. The string of symbols can
be divided into many components by the symbol ‘/’. For example: the URL
www.firstgov.gov/topics/science.html can be divided into 3 components,
which are www.firstgov.gov, topics and science.html. The URL depth feature
score for a given document is defined as follows:

Score(D)UD = Numcomponent (4)

where Numcomponent is the number of components after the division.

3.3 Click Distance (CD)

Click Distance is a link metric which measures the number of minimum clicks it
takes to reach a web document from a given root [5]:

Score(D)CD = Numclick (5)

where Numclick is the number of clicks from the root to document D. For ex-
ample, if it takes 6 clicks from the root to go to page A and 2 clicks from the
root to go to page B, then page B has a smaller Click Distance than page A.

3.4 The FLOE Method

Craswell et al. [5] proposed the FLOE method for transforming a query-
independent feature score into a per-document relevance score. The method
allocates a query-independent feature score for each document D as follows:

score(D, Q) = scoreQD(D, Q) + scoreQI(D) (6)

where scoreQD(D, Q) is the query-dependent relevance score of D given a query
Q and can be estimated by a document weighting scheme, such as PL2F in this
paper; scoreQI(D) is the query-independent relevance score for a given document
D, estimated by the FLOE using a query-independent feature. score(D, Q) is
the final relevance score of document D given the query Q.

Craswell et al. proposed two different versions of the FLOE method. In this
paper, we denote them as FLOE1 and FLOE2, respectively. The two versions
of FLOE are defined as follows:

FLOE1(S, w, k, a) = w · Sa

ka + Sa
(7)

www.firstgov.gov/topics/science.html
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FLOE2(S, w, k, a) = w · ka

ka + Sa
(8)

where S is the query-independent feature score, w, k and a are parameters.
With the same w, k, and a settings, in Equation (7), a document with a higher
query-independent feature score attains a higher relevance score after the trans-
formation, while in Equation (8), a document with a higher query-independent
feature score attains a lower relevance score after the transformation. For ex-
ample, PageRank scores are mapped using FLOE1, as a document that has a
high PageRank score is usually considered to be a high-quality document; On
the contrary, URL depth scores are transformed using FLOE2 as documents
with shorter URL depth are usually seen as more authoritative than pages with
longer URL depth.

4 Feature Selection

In this section, we propose a novel method for selectively applying the most
appropriate query-independent feature on a per-query basis. The distribution
of retrieval scores has been applied to predict the effectiveness of a search en-
gine [11]. In this paper, we use the divergence between the retrieved document
scores’ distributions, prior to and after the integration of the query-independent
feature, to predict which query-independent feature should be applied, indepen-
dently of the query type.

URL type feature has shown its effectiveness in Homepage finding task [8] and
it is computed based on two distributions: one is the distribution of the number
of documents in the relevance assessment set with different URL type; another
one is the distribution of the number of documents in the test collection with
different URL type. Inspired by this idea, we propose a decision mechanism,
which is also based on two different distributions of the estimated divergence
scores, to selectively apply the most appropriate query-independent feature. The
details of the method are provided in the following sections.

4.1 Divergence between Probability Distributions

There are several different ways to estimate the divergence between the document
scores distribution prior to, and after the integration of the query-independent
feature. In this paper, we use Jensen-Shannon divergence [9], given as follows:

JS(X, Y ) =
n∑

i=1

xi · log2

xi
1
2 · xi + 1

2 · yi

(9)

where for the top n retrieved documents of a given query, X = {xi}, Y = {yi}
and xi and yi are the relevance scores of document i prior to, and after the
integration of a given query-independent feature, respectively. It is easy to verify
that JS(X, Y ) �= JS(Y, X). In order to avoid the issue of the ordering of X and
Y , we use the symmetric Jensen-Shannon (SJS) divergence:

SJS(X, Y ) = JS(X, Y ) + JS(Y, X) (10)
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4.2 Decision Mechanism

For a given query Q, assume that we have k query-independent candidate features:
f1, f2, ..., fk, and we need to apply the most appropriate one. For this purpose, we
describe the decision mechanism of our selective application method as follows:

– First, on the training dataset, we use the SJS divergence estimation method
to estimate the fφ’s divergence score for each query. Note that one divergence
score will be estimated for each query on each given feature fφ.

– Second, we put all of the estimated fφ’s divergence scores into a bin (note
that the estimated divergence scores for different query-independent features
will be put into different bins) and divide the bin into several equal size sub-
bins, according to the logscale of the divergence scores of fφ. Each sub-bin
corresponds to an interval of divergence scores. We denote the interval of
each sub-bin of feature fφ as Sχ(fφ). Note that the number of sub-bins is an
important parameter which needs an appropriate setting.

– Third, for each sub-bin, it contains two important numbers: one is the num-
ber of queries, whose divergence scores are in the interval of this sub-bin, we
denote it as c(Sχ(fφ)); another is the number of queries for which fφ led to
a better retrieval performance than all the other query-independent features
in the interval of this sub-bin, we denote it as c(Sχ(fφ, BEST )). Note that
the above three steps are completed on a training dataset.

– Finally, on the test dataset, with the given query Q, we use the SJS divergence
estimation method to estimate the divergence score between the top retrieved
document scores distribution prior to, and after the integration of a feature fφ.
The resulting divergence score is then allocated into the corresponding inter-
val of feature fφ’s sub-bin. The probability of fφ being the most appropriate
query-independent feature for this given query Q is defined as follows:

P (fφ|Q) =
c(Sχ(fφ, BEST ))

c(Sχ(fφ))
(11)

We apply feature fφ if and only if it has the highest P (fφ|Q) score compared
with all other features. Note that the computational cost of our proposed fea-
ture selection method is very cheap as we only compute the divergence of the
top n retrieved documents. n is a parameter that needs an appropriate setting.

As an example, we selectively apply the most appropriate query-independent
feature between PageRank and URL depth on the .GOV test collection, using the
title-only mixed topics from the TREC 2003 Web Track. In this dataset, there are
350 queries in total. Based on our retrieval system setting, there are 74 queries
where PageRank is the most appropriate query-independent feature, 91 queries
where the URL depth is the most appropriate query-independent feature and 185
queries where both PageRank and URL depth produce the same retrieval perfor-
mance. In this example, we set the number of the top retrieved documents, namely
n in Equation (9), to 1000 and the number of sub-bins to 5. From Table 1, we
can see that, in some intervals, such as Sχ = S3 and Sχ = S5, the probability
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Table 1. Example of the probability of PageRank (fφ = PR) and URL depth (fφ =
UD) being the most appropriate query-independent feature in each interval Sχ on the
TREC 2003 Web Track, respectively

c(Sχ(PR,BEST )) c(Sχ(PR)) P (PR|Q) c(Sχ(UD, BEST )) c(Sχ(UD)) P (UD|Q)

Sχ = S1 1 7 0.1428 1 2 0.5

Sχ = S2 12 64 0.1875 3 9 0.3333

Sχ = S3 52 239 0.2175 46 199 0.2311

Sχ = S4 4 31 0.1290 38 132 0.2878

Sχ = S5 5 9 0.5555 3 8 0.3750

total 74 350 91 350

Table 2. Details of the number and percentage of topics associated to each topic type
for TREC 2003 and TREC 2004 Web Tracks

TREC 2003 TREC 2004

HP NP TD HP NP TD

Number of topics 150 150 50 75 75 75

Percentage 42.9% 42.9% 14.2% 33.3% 33.3% 33.3%

of PageRank (fφ = PR) being the most appropriate query-independent feature
when allocated in Sχ = S5 is higher than in Sχ = S3 even though Sχ = S3 has
a higher number of c(Sχ(fφ, BEST )). This shows that our decision mechanism is
based on the distributions from both c(Sχ(fφ, BEST )) and c(Sχ(fφ)). A similar
phenomenon is also observed for the URL depth feature (fφ = UD). Assume that
the divergence scores of PageRank and URL depth for a given query Q are allo-
cated into interval S5 and S4, respectively, which means that the probabilities of
PageRank and URL depth being the most appropriate query-independent feature
for this given query are equal to 0.5555 and 0.2878, respectively. In this case, we
apply PageRank as it has higher P (fφ|Q) score (0.5555 > 0.2878).

5 Experimental Environment

We use the standard .GOV Web test collection, and its corresponding TREC
2003 & 2004 Web Tracks title-only topics and relevance assessment sets. For the
TREC 2003 and TREC 2004 Web Tracks, there are three different topic types,
namely Homepage (HP) finding topics, Named Page (NP) finding topics and
Topic Distillation (TD) topics. From Table 2, we can see that the percentages of
each topic type are different across the TREC 2003 and TREC 2004 datasets.
This means that there is a possible bias problem, especially on the TD topics
if we train on the TREC 2003 dataset and test on the TREC 2004 queries.
In order to avoid this bias problem and assess our proposed method on a big
enough training and test datasets, we mix the TREC 2003 and TREC 2004 Web
Track topics and relevance assessment sets, respectively. We use a 3-fold cross-
validation process by separating the mixed datasets into three folds of equal size,
each fold contains 41 Topic Distillation topics, 75 Homepage finding topics and
75 Named Page finding topics. We iteratively test our feature selection method
on one fold after training on the remaining two folds.
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For indexing and retrieval, we use the Terrier IR platform1 [13], and apply
standard stopwords removal. In addition, to boost early precision, we apply the
first two steps of the Porter’s stemming algorithm for English. We index the
body, anchor text and titles of documents as separate fields and use the PL2F
field-based DFR document weighting model [10], as described in Section 2. We
experiment with the three query-independent features introduced in Section 3,
namely PageRank, URL depth and Click Distance. While for obvious length
constraints, this paper concentrates on the aforementioned three features, it is
straightforward to expand the work using another set of features.

The evaluation measure used in all our experiments is the mean average preci-
sion (MAP). The parameters that are related with the PL2F document weight-
ing model and the FLOE methods are set by optimising MAP on the training
dataset, using a simulated annealing procedure [7]. We use FLOE1 for PageR-
ank and FLOE2 for the URL depth and Click Distance. The number of the
top retrieved documents, namely n in Equation (9), and the number of bins in
Section 4.2 are also set by optimising MAP over the training dataset, using a
large range of different value settings. For the Click Distance feature, we use
firstgov.gov as the root. The maximum Click Distance is 46 in the .GOV col-
lection. For those documents that cannot be reached from the root, we assume
a Click Distance of 47.

In our experiments, we mainly conduct four different kinds of evaluations:

– Firstly, we assess how important it is to selectively apply a query-
independent feature on a per-query basis in Web IR.

– Secondly, we test how effective our proposed method is for selectively apply-
ing one query-independent feature out of two candidate features.

– Thirdly, as the number of candidate features increases, the selective applica-
tion becomes more challenging. We further investigate how effective our pro-
posed method is for selectively applying a query-independent feature when
there are more than two candidate features.

– Finally, as described in the introduction (see Section 1), we use the QTP
method as an alternative baseline approach to apply the most appropriate
query-independent feature. In order to compare our proposed method to a
strong QTP method, we simulate an optimal 100% accuracy for this method,
meaning that the simulated QTP method knows with certainty the query
type before applying a query-independent feature.

We report the obtained results, and their analysis in the next section.

6 Discussion

Table 3 provides the MAP upper bounds that can be achieved by manually and
selectively applying a query-independent feature on a per-query basis, first when
there are two possible candidate features (columns 6-8), and second when we use

1 http://ir.dcs.gla.ac.uk/terrier

firstgov.gov
http://ir.dcs.gla.ac.uk/terrier
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Table 3. The MAP upper bounds, highlighted in bold, which are achieved by the
manual selective application of query-independent features on each test fold

MAP

PL2F +PR +UD +CD +(PR|UD) +(PR|CD) +(UD|CD) +(PR|UD|CD)

Fold 1 0.6113 0.6430 0.6399 0.6284 0.6887∗�� 0.6721∗�• 0.6745∗�• 0.6992∗��•
Fold 2 0.5488 0.5802 0.5740 0.5668 0.6250∗�� 0.6146∗�• 0.6150∗�• 0.6436∗��•
Fold 3 0.5587 0.5792 0.5858 0.5806 0.6221∗�� 0.6049∗�• 0.6154∗�• 0.6322∗��•

all three features (column 9). In each row, values that are statistically different
from PL2F, PL2F+PR, PL2F+UD and PL2F+CD are marked with ∗, �, � and
•, respectively (Wilcoxon Matched-Pairs Signed-Ranks Test, p < 0.05). Tables 4
& 5 show the MAP obtained by applying our proposed selective application
method when there are two and more than two candidate features, respectively.
The best retrieval performance in each row is highlighted in bold. The symbol
† denotes that our approach applies the most appropriate query-independent
feature for a statistically significant number of queries, according to the Sign Test
(p < 0.05). The symbol ∗ denotes that the MAP obtained by using our method
is statistically better than the one achieved by the PL2F baseline, as well as all
the systems where a query-independent feature has been uniformly applied to
all queries, according to the Wilcoxon Matched-Pairs Signed-Ranks Test (p <
0.05). Table 6 shows the comparison between our proposed method and the QTP
method. The best retrieval performance and the highest prediction accuracy
in each row is highlighted in bold and in italic, respectively. In Tables 4 - 6,
Number reports the number of queries for which the selected query-independent
feature has been correctly applied (denoted Pos.), using the manual upper bound
approach as a ground truth. Conversely, the column Neg. reports the number of
queries for which the system has failed to apply the most appropriate feature.
The column Neu. reports the number of queries where all query-independent
features produced the same MAP.

Firstly, we assess how important it is to selectively apply a query-independent
feature on a per-query basis in Web IR, by estimating the upper bounds perfor-
mances of the selective application method. This allows to estimate the extent
to which it is indeed possible to enhance the retrieval performance of a Web IR
system when the most appropriate query-independent feature is applied on a
per-query basis. From Table 3, it is clear that using a manual selective method
leads to significant increases in performances compared to the PL2F baseline
as well as systems where a query-independent feature was applied uniformly to
all queries. We also observe that the upper bounds of the selective application
among three query-independent features are markedly higher than the selective
application between any two of them, although not significantly so. This suggests
that the selective application of a query-independent feature on a per-query basis
is very important for a Web IR system, and that the retrieval performance could
be further improved when the number of query-independent features increases.

Secondly, we test how effective our proposed automatic method is for se-
lectively applying a query-independent feature when there are two candidate



384 J. Peng and I. Ounis

Table 4. Evaluation of our automatic selective application between two query-
independent features

Selective Application between PR and UD

MAP Number

PL2F PL2F+PR PL2F+UD Selective Pos. Neg. Neu.

Fold 1 0.6113 0.6430 0.6399 0.6641†∗ 65 28 98

Fold 2 0.5488 0.5802 0.5740 0.5979†∗ 63 38 90

Fold 3 0.5587 0.5792 0.5858 0.6049†∗ 69 29 93

Selective Application between PR and CD

MAP Number

PL2F PL2F+PR PL2F+CD Selective Pos. Neg. Neu.

Fold 1 0.6113 0.6430 0.6284 0.6515† 54 34 103

Fold 2 0.5488 0.5802 0.5668 0.5914† 67 38 86

Fold 3 0.5587 0.5792 0.5806 0.5911† 58 28 105

Selective Application between UD and CD

MAP Number

PL2F PL2F+UD PL2F+CD Selective Pos. Neg. Neu.

Fold 1 0.6113 0.6399 0.6284 0.6477† 56 33 102

Fold 2 0.5488 0.5740 0.5668 0.5875† 69 36 86

Fold 3 0.5587 0.5858 0.5806 0.5994† 64 28 99

features. We compare our proposed method to the PL2F baseline, as well as the
method that applies a query-independent feature uniformly to all queries. From
Table 4, we can see that, for the three different combinations, namely PR|UD,
PR|CD and UD|CD, our proposed approach can always markedly improve the
PL2F baseline and that of the systems where a query-independent feature is
uniformly applied. In particular, for the selective application between PageRank
and URL depth, the improvement is constantly statistically significant on each
fold. Moreover, we also observe that a statistically significant number of queries
have been applied with the most appropriate query-independent feature on all
possible combinations and on all folds. This suggests that our proposed approach
is an effective method for selecting the most appropriate feature from any two
candidate features.

Thirdly, as the number of candidate features increases, the selective application
method raises more challenges. We further investigate how effective our proposed
method is for selectively applying the most appropriate query-independent feature
when there are more than two candidate features. In particular, we select the most
appropriate query-independent feature out of the three used PR, UD, and CD fea-
tures. The evaluation results from Table 5 show that our approach can constantly
make a significant improvement over PL2F and that of the systems where a query-
independent feature was uniformly applied. The observation is upheld on each fold.
Moreover, we also observe that a statistically significant number of queries have
been applied with the most appropriate query-independent feature on all folds.
In addition, comparing the best MAP results that can be obtained in each fold
in Tables 4 & 5, we can see that the retrieval performance obtained by using our
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Table 5. Evaluation of our automatic selective application among more than two
query-independent features

Selective Application among PR, UD and CD

MAP Number

PL2F PL2F+PR PL2F+UD PL2F+CD Selective Pos. Neg. Neu.

Fold 1 0.6113 0.6430 0.6399 0.6284 0.6653†∗ 61 38 92

Fold 2 0.5488 0.5802 0.5740 0.5668 0.5994†∗ 68 45 78

Fold 3 0.5587 0.5792 0.5858 0.5806 0.6128†∗ 65 37 89

Table 6. Comparison between our proposed method and the QTP method

Selective Application among PR, UD and CD

Our Proposed Method The QTP Method

Pos. Neg. Neu. Accuracy MAP Pos. Neg. Neu. Accuracy MAP

Fold 1 61 38 92 61.6% 0.6653 55 44 92 55.6% 0.6588

Fold 2 68 45 78 60.2% 0.5994 67 46 78 59.3% 0.5967

Fold 3 65 37 89 63.7% 0.6128 63 39 89 61.8% 0.6077

proposed approach can be further improved when there are more than two can-
didate query-independent features. This is encouraging, as this suggests that our
proposed automatic approach remains effective and robust even when the num-
ber of candidate features increases. Overall, while the results obtained in Tables 4
& 5 are naturally lower than the upper bounds performances in Table 3, they are
nevertheless roughly reasonably comparable.

Finally, as mentioned in Section 1, we use the alternative QTP method, to
apply the most appropriate query-independent feature on a per-query basis. We
train the QTP method using the same training procedure described in Section 5,
by identifying the most effective feature for a given query type. We compare
our proposed method to the optimal QTP method, by simulating an ideal 100%
accuracy in detecting the query type. From Table 6, we can see that our proposed
method constantly outperforms the QTP method in both accuracy and MAP
on all folds. This particularly stresses the effectiveness and robustness of our
approach compared to the QTP method, given that the query type prediction
in a practical system is usually much lower than 100% (See Section 1). It also
suggests that queries which have the same type do not necessarily equally benefit
from the application of a given query-independent feature since the MAP value
obtained from the QTP method is not equal to the value of the upper bound on
each fold, even though the accuracy of the query type prediction is simulated
equal to 100%.

7 Conclusions

In this paper, we have proposed a novel method for the selective application of
a query-independent feature on a per-query basis. We have tested our proposed
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approach on the TREC .GOV Web test collection and the mixed topic sets from
the TREC 2003 & 2004 Web Tracks.

We have obtained very encouraging experimental results. First, we showed
that the retrieval performance can be significantly improved by an optimal
selective application of a query-independent feature. This indicates that the se-
lective application of the query-independent feature on a per-query basis can
indeed significantly enhance the retrieval performance of a Web IR system.

Second, using our proposed automatic selective application method, and any
two query-independent features, we observed that the most appropriate feature
has been applied for a statistically significant number of queries. The improve-
ment in MAP was statistically significant when the selective application occurred
using PageRank and URL depth.

Third, as the number of candidate features increases, the selective application
raises more challenges. Therefore, we further investigated how effective our pro-
posed method is for selectively applying the most appropriate query-independent
feature when there are more than two candidate features. The experimental re-
sults showed that our proposed approach can constantly make a significant im-
provement in MAP over a strong field-based document ranking model, as well as
that of the systems where a query-independent feature was uniformly applied.
We also observed that the most appropriate query-independent feature has been
applied in a statistically significant number of queries.

Finally, we compared our proposed method to a simulated QTP method,
which has an ideal 100% accuracy on the query type prediction. We observed
that our proposed method constantly outperforms the QTP method in all folds.
This suggests that our proposed selective application approach is effective and
robust.
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