
Terrier: A High Performance and Scalable Information
Retrieval Platform

Iadh Ounis, Gianni Amati
∗

, Vassilis Plachouras, Ben He,
Craig Macdonald, Christina Lioma

Department of Computing Science
University of Glasgow Scotland, UK

{ounis,gianni,vassilis,ben,craigm,xristina}@dcs.gla.ac.uk

ABSTRACT
In this paper, we describe Terrier, a high performance and
scalable search engine that allows the rapid development of
large-scale retrieval applications. We focus on the open-
source version of the software, which provides a comprehen-
sive, flexible, robust, and transparent test-bed platform for
research and experimentation in Information Retrieval (IR).

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Design, Experimentation, Performance, Theory

Keywords
Terrier, Information Retrieval platform, Open Source

1. INTRODUCTION
Terrier [12], Terabyte Retriever, is a project that was ini-

tiated at the University of Glasgow in 2000, with the aim
to provide a flexible platform for the rapid development of
large-scale Information Retrieval applications, as well as a
state-of-the-art test-bed for research and experimentation in
the wider field of IR.

The Terrier project explored novel, efficient and effective
search methods for large-scale document collections, com-
bining new and cutting-edge ideas from probabilistic theory,
statistical analysis, and data compression techniques. This
led to the development of various retrieval approaches us-
ing a new and highly effective probabilistic framework for
IR, with the practical aim of combining efficiently and ef-
fectively various sources of evidence to enhance the retrieval
performance.

In particular, we have developed several new hyperlink
structure analysis methods [15], various selective combina-
tion of evidence approaches [13, 16], new document length
normalisation methods [1, 7, 8], many automatic query ex-
pansion and re-formulation techniques [1, 11], as well as a

∗Also affiliated to Fondazione Ugo Bordoni, Rome

Copyright is held by the author/owner(s).
SIGIR Open Source Workshop ’06 Seattle, Washington, USA.

comprehensive set of query performance predictors [6, 9], to
support a wide range of retrieval tasks and applications.

In addition, an effective in-house, highly configurable and
scalable crawler called Labrador1 has been developed. The
crawler was used for the deployment of Terrier in various
industrial applications. Various powerful compression tech-
niques have been explored and implemented, making Ter-
rier particularly suitable for large-scale collections. Finally,
the project investigated distributed architectures and re-
trieval [4], which allowed the system to be used both in a
centralised and distributed setting.

This paper focuses on a core version of Terrier, an open
source product, which has been available to the general
public since November 2004 under the MPL license2. The
open source version of Terrier is written in Java, allow-
ing the system to run on various operating systems plat-
forms, and a wide variety of hardware. Terrier, the lat-
est version of which is 1.0.2, is available to download from
http://ir.dcs.gla.ac.uk/terrier/.

2. MOTIVATIONS & AIMS
In any experimental science field, as is the case in IR, it

is crucial to have a system allowing large-scale experimenta-
tion to be conducted in a flexible, robust, transparent and
reproducible way. Terrier addresses this important issue by
providing a test-bed framework for driving research and fa-
cilitating experimentation in IR.

The major leading IR groups in the world have always had
an experimental platform to support their research. Most of
the existing IR platforms are designed towards supporting
a particular IR method/approach, making them difficult to
customise and tailor to new methods and approaches.

Terrier is the first serious answer in Europe to the dom-
inance of the United States on research and technological
solutions in IR. Our objective was to include the state-of-
the-art IR methods and techniques, and offer the most effi-
cient and effective IR technologies, into a transparent, eas-
ily extensible and modular open source software. The open
source product of Terrier was therefore designed as a tool to
evaluate, test and compare models and ideas, and to build
systems for large-scale IR.

The system includes efficient and effective state-of-the-art
retrieval models based on a new Divergence From Random-
ness (DFR) framework for deriving parameter-free proba-

1http://ir.dcs.gla.ac.uk/labrador/
2http://www.mozilla.org/MPL/

bilistic models for IR [1]. The DFR models are information-
theoretic models, for both query expansion and document
ranking, a versatile feature that is not possessed by any
other IR model. In addition, for easy cross-comparison of
different retrieval models, Terrier includes a wide variety of
models, ranging from numerous forms of the classical TF-
IDF weighting scheme to the recent language modelling ap-
proach, through the well-established Okapi’s BM25 proba-
bilistic ranking formula.

Terrier provides various indexing and querying APIs, and
allows rapidly experimenting with new concepts/ideas on
various collections, and in different configuration settings.
This important feature for a research platform is made pos-
sible by the modular architecture of the system, its various
easy-to-use configuration options, as well as its use of the
most recent software engineering methods. The system is
very easy to work with, further helped with a comprehen-
sive documentation3, and is easy to extend and adapt to
new applications. This is demonstrated by the use of the
platform in such diverse search tasks as desktop search, web
search, e-mail & expertise search, XML retrieval, multilin-
gual and blogs search.

Finally, Terrier includes various retrieval performance eval-
uation tools, which produce an extensive analysis of the re-
trieval effectiveness of the tested models/concepts on given
test collections. Systems and their variants can be instanti-
ated in parallel, an important feature for conducting numer-
ous experiments at the same time, thus fostering extensive
experimentation in a structured and systematic way.

The remainder of this paper is structured as follows. We
describe the main indexing features of Terrier in Section 3,
and their associated data structures in Section 4. Section
5 provides an overview of the retrieval features of Terrier,
which make the system particularly suitable for research
purposes. In Section 6, we describe a very interesting func-
tionality of Terrier, namely query expansion, and outline
how it can be used for other IR activities and applications.
The retrieval performance evaluation package of Terrier is
presented in Section 7, while some “out-of-the-box” appli-
cations of Terrier are described in Section 8. Finally, we
conclude the paper with lessons learnt while building the
Terrier platform.

3. INDEXING FEATURES
Figure 1 outlines the indexing process in Terrier. Terrier

is designed to allow many different ways of indexing a corpus
of documents. Indexing is a four stage process, and at each
stage, plugins can be added to alter the indexing process.
This modular architecture allows flexibility in the indexing
process at several stages: in the handling of a corpus of doc-
uments, in handling and parsing each individual document,
in the processing of terms from documents, and in writing
the index data structures. In addition, Terrier allows the
direct parsing and indexing of compressed collections.

The open source version of Terrier comes with support for
indexing test collections from the well-established TREC4

international evaluation forum. This permits researchers to
quickly set up and run Terrier with a test collection, less-
ening the learning curve for the platform. The advantage is
that any other storage method for a collection of documents

3http://ir.dcs.gla.ac.uk/terrier/docs.html
4http://trec.nist.gov

Figure 1: Overview of the indexing architecture of
Terrier. A corpus of documents is handled by a Col-
lection plugin, which generates a stream of Docu-
ment objects. Each Document generates a stream
of terms, which are transformed by a series of Term
Pipeline components, after which the Indexer writes
to disk.

can easily be supported by adding a new Collection plugin.
For example, reading a stream of documents from an email
server would only require implementing a new Collection
plugin to connect to the email server.

Terrier comes with various document parsers embedded.
These include the ability to index HTML documents, Plain
text documents, Microsoft Word, Excel and Powerpoint doc-
uments, as well as Adobe PDF files. To add support for
another file format to Terrier, a developer must only add
another Document plugin which is able to extract the terms
from the document.

Each term extracted from a document has three funda-
mental properties: firstly, the actual String textual form of
the term; secondly, the position at which the term occurs
in the document, and thirdly, the fields in which the term
occurs (fields can be arbitrarily defined by the Document
plugin, but typically are used to define which HTML tags a
term occurs in). Terrier adds configurability at this stage of
the indexing: terms are passed through a ‘Term Pipeline’,
which allows the terms to be transformed in various ways.
Terrier comes with some pre-defined Term Pipeline plug-
ins, such as two variants of Porter’s stemming algorithm,
and a stopwords removal component. Term Pipeline plug-
ins introduce flexibility to the processing and transformation
of terms, which can be manifested for example by n-gram
indexing, adding stemming and stopword removal in vari-
ous languages, acronym expansion, or use of a thesaurus, to
name but a few.

The last component in the Term Pipeline chain is always
the Indexer. The Indexer is responsible for writing the in-
dex using the appropriate data structures. By using a Block
Indexer, it is possible to create an index that stores the posi-
tions of terms in each document. Each document is divided
into blocks - the size of a block defines the accuracy with
which term positions are recorded. By default, the size of
a block is 1 and, in that case, the exact positions of the

term occurrences are recorded. This allows for proximity
and phrase operators to be used in queries during retrieval.
However, a block could also be defined as a semantic entity,
so as to allow structured retrieval. The following section de-
scribes the index data structures generated by Terrier when
indexing a corpus of documents.

4. INDEX STRUCTURES
A Terrier index consists of 4 main data structures, in ad-

dition to some auxiliary files:

• Lexicon:
The lexicon stores the term and its term id (a unique
number for each term), along with the global statistics
of the term (global term frequency and document fre-
quency of the term) and the offsets of the postings list
in the Inverted Index.

• Inverted Index:
The inverted index stores the postings lists of a term.
In particular, for each term, the inverted index stores:
the document id of the matching document; and the
term frequency of the term in that document. The
fields in which the term occurred are encoded using a
bit set. If the index has been made with positional in-
formation, the postings list will also contain the block
ids in the document that the term occurs in. Positional
information allows phrasal and proximity search to be
performed.

The postings list in Terrier is highly compressed. In
particular, the document ids are encoded in the in-
verted index using Gamma encoding, the term fre-
quencies are encoded using Unary encoding, and the
Block ids, if present, are encoded using Gamma en-
coding [20].

• Document Index:
The Document Index stores the document number (an
external unique identifier of the document), the doc-
ument id (internal unique identifier of the document);
the length of the document in terms of tokens; and the
offset of the document in the Direct Index.

• Direct Index:
The Direct Index stores the terms and term frequen-
cies of the terms present in each document. The aim
of the Direct Index is to facilitate easy and efficient
query expansion, as described in Section 6. However,
the direct index is also extremely useful for applying
clustering to a collection of documents.

The direct index contents are compressed in an orthog-
onal way to the inverted index. Term ids are written
using Gamma encoding, term frequencies use Unary
encoding and the fields in which the terms occur are
encoded using a bit set. Block ids, if present, are en-
coded using Gamma encoding.

Table 1 details the format of each file in the index struc-
tures. Moreover, Table 2 shows the sizes of Terrier’s index
data structures after indexing the WT2G collection. Fields
are not recorded, while index sizes with and without term
positions are stated. For comparison purposes, the index
sizes of Terrier without compression, and two other open

Index Structure Contents
Lexicon Term (20)

Term id (4)
Document Frequency (4)
Term Frequency (4)
Byte offset in inverted file (8)
Bit offset in inverted file (1)

Inverted Index Document id gap (gamma code)
Term Frequency (unary code)
Fields (# of fields bits)
Block Frequency (unary code)
[Block id gap (gamma code)]

Document Index Document id (4)
Document Length (4)
Document Number (20)
Byte offset in direct file (8)
Bit offset in direct file (1)

Direct Index Term id gap (gamma code)
Term frequency (unary code)
Fields (# of fields bits)
Block frequency (unary code)
[Block id gap (gamma code)]

Lexicon Index Offset in lexicon (8)
Collection Statistics # of documents

of tokens
of unique terms
of pointers

Table 1: Details on the format and compression
used for each index data structure. The numbers
in parenthesis are the size of each entry in bytes,
unless otherwise denoted. Gamma and unary codes
are variable length encodings.

source products, Indri5 and Zettair6 for the same collection
are also provided. Like Terrier, Indri and Zettair are de-
ployed using their default settings.

5. RETRIEVAL FEATURES
One of the main aims of Terrier is to facilitate research in

the field of IR. Figure 2 provides an outline of the retrieval
process in Terrier. Terrier’s retrieval features have been se-
lected in order to be useful for a wide range of IR research.
Indeed, Terrier offers great flexibility in choosing a weight-
ing model (Section 5.1), as well as in altering the score of
the retrieved documents (Section 5.2). Moreover, Terrier
offers an advanced query language (Section 5.3). Another
very important retrieval feature of Terrier is the automatic
query expansion, which is described in Section 6.

5.1 Weighting Models
The core functionality of matching documents to queries

and ranking documents takes place in the Matching mod-
ule. Matching employs a weighting model to assign a score
to each of the query terms in a document. In order to facil-
itate the cross-comparison of weighting models, a range of
weighting models is supplied, including BM25, TF-IDF, and
document weighting models from the Divergence From Ran-

5http://www.lemurproject.org/indri/
6http://www.seg.rmit.edu.au/zettair/

Index Structure Index Sizes % Of WT2G
Terrier 1.0.2

Direct Index 87MB 4%
Inverted Index 72MB 3%

Lexicon 40MB 2%
Document Index 8.8MB 0.4%

Terrier if no compression is used
Direct Index 481MB 22%

Inverted Index 481MB 22%
Lexicon 40MB 2%

Document Index 8.8MB 0.4%

Terrier 1.0.2 with Term Positions
Direct Index 366MB 17%

Inverted Index 349MB 17%
Lexicon 40MB 2%

Document Index 8.8MB 0.4%

Indri 2.2
Direct Index 386MB 18%

Inverted Index 417MB 19%

Zettair 0.6.1
Inverted Index 430MB 20%

Table 2: Index sizes for Terrier (with and without
term positions), Indri and Zettair for the WT2G col-
lection (2.1GB). Terrier’s uncompressed index size
is provided for comparison purposes.

Figure 2: Overview of the retrieval architecture of
Terrier. The application communicates with the
Manager, which in turn runs the desired Matching
module. Matching assigns scores to the documents
using the combination of weighting model and score
modifiers.

domness (DFR) framework [1]. The DFR approach supplies
parameter-free probabilistic models, based on a simple idea:

“The more the divergence of the within-document
term-frequency from its frequency within the col-
lection, the more the information carried by the
term t in the document d”.

The open source 1.0.2 version of Terrier includes eight doc-
ument weighting models from the DFR framework, all of
which perform robustly on standard test collections. Ponte-
Croft’s language model [18] is also supported.

5.2 Altering Document Scores
The score of an individual term in a document can be

altered by applying a TermScoreModifier. For example, a
TermInFieldModifier can be applied in order to ensure that
the query terms occur in a particular field of a document.
If a query term does not appear in a particular field, then
the TermInFieldModifier resets the score of the document.
In addition, a FieldScoreModifier boosts the score of a doc-
ument in which a query term appears in a particular field.

Similarly, changing the score of a retrieved document is
achieved by applying a DocumentScoreModifier. One such
modifier is the PhraseScoreModifier, which employs the po-
sition information saved in the index of Terrier, and resets
the score of the retrieved documents in which the query
terms do not appear as a phrase, or within a given number
of blocks. Generally, a DocumentScoreModifier is ideal for
applying query-independent evidence, such as evidence from
hyperlink structure analysis, or from the URL of documents.
Moreover, the selective application of different retrieval tech-
niques based on evidence from the hyperlink structure [13]
can be applied as a DocumentScoreModifier.

After the application of any TermScoreModifiers or Doc-
umentScoreModifiers, the set of retrieved documents can be
further altered by applying post processing or post filtering.
Post processing is appropriate to implement functionalities
that require changing the original query. An example of post
processing is Query Expansion (QE), which is described in
detail in Section 6. The application of QE could be enabled
on a per-query basis, before retrieval, depending on the out-
put of a pre-retrieval performance predictor [6]. Another
possible example of post processing could be the applica-
tion of clustering.

Post filtering is the final step in Terrier’s retrieval process,
where a series of filters can remove already retrieved docu-
ments, which do not satisfy a given condition. For example,
in the context of a Web search engine, a post filter could be
used to reduce the number of retrieved documents from the
same Web site, in order to increase diversity in the results.

5.3 Query Language
Terrier includes a powerful query language that allows the

user to specify additional operations on top of the normal
probabilistic queries. Such operations may specify that a
particular query term should or should not appear in the
retrieved documents. Other available operations include re-
quiring that terms appear in particular fields, phrase queries,
or proximity queries. An overview of the available query lan-
guage operations is given below.

• t1 t2 retrieves documents with either t1 or t2.

• t1∧2.3 sets the weight of query term t1 to 2.3.

• +t1 -t2 retrieves documents with t1 but not t2.

• ‘‘t1 t2’’ retrieves documents where the terms t1

and t2 occur next to each other.

• ‘‘t1 t2’’∼n retrieves documents where the terms t1,
t2 occur within n blocks.

• +(t1 t2) specifies that both terms t1 and t2 are re-
quired.

• field:t1 retrieves docs where t1 must appear in the
specified field.

• control:on/off enables or disables a given control.
For example, query expansion is enabled with qe:on.

The query language operations correspond to TermScore-
Modifier or DocumentScoreModifier modules, which are ap-
propriately configured when the query is parsed. Retrieval
parameters can also be specified by the user, when permit-
ted, to change or enable retrieval functionalities. For exam-
ple, a query for which a particular query term should appear
in the title of the retrieved documents, automatically enables
a TermInFieldModifier.

6. QUERY EXPANSION
Terrier includes automatic pseudo-relevance feedback, in

the form of Query Expansion (QE). The method works by
taking the top most informative terms from the top-ranked
documents of the query, and adding these new related terms
into the query. This operation is made possible by the pres-
ence of the direct index. The direct index allows the terms
and their frequencies to be determined for each document in
the index. The new query is reweighted and rerun - provid-
ing a richer set of retrieved documents. Terrier provides sev-
eral term weighting models from the DFR framework which
are useful for identifying informative terms from top-ranked
documents. In addition, for easy cross-comparison, Terrier
also includes some well-established pseudo-relevance feed-
back techniques, such as Rocchio’s method [19].

Automatic query expansion is highly effective for many
IR tasks. The decision of applying QE depends on the type
of application, and the difficulty of queries. Therefore, we
have developed several tools for determining possible indi-
cators that predict the query difficulty, and the selective
application of query expansion [2, 6, 9]. The vocabulary
and size of the collections may be largely different. As a
consequence, automatic means to tune the inherent param-
eters of the query expansion are also necessary in a good IR
system. For this purpose, we devised a parameter-free QE
mechanism, called Bo1 [1, 11], as a default in Terrier. The
system is also readily available to support several low-cost
methods for a selective application of query expansion. Our
method of QE guarantees the most effective and efficient
mechanism for performing QE, even with only using 3 re-
trieved documents and a handful of additional query terms.
In addition, QE can be also used to automatically generate
realistic samples of queries [6].

Data structures, in particular the direct file, tools and
methods adopted for performing QE in Terrier, also consti-
tute an advanced basis for other types of IR activities and
applications, such as document and term clustering or ques-
tion answering. Indeed, the query expansion methodology
is based on a filter, activated on the information theoretic

Collection Topics/Task Performance
WT2G Adhoc Topics 401-450 0.2663 MAP
WT10G Adhoc Topics 451-550 0.1886 MAP
W3C Known Item Topics 26-150 0.4960 MRR

Table 3: Performance of “out-of-the-box” Terrier on
standard TREC collections and tasks. Performance
is measured using the standard measure for each
task: for Adhoc, Mean Average Precision (MAP);
for Known Item, Mean Reciprocal Rank (MRR).

weights of the terms, which selects the highly informative
terms that appear in at least X retrieved documents. As
an illustration, the optimal value for X is 2 in adhoc re-
trieval. The clustering of the results would require a higher
value for X, while question answering may require a differ-
ent information theoretic definition for X. In conclusion,
QE is a good source of inspiration for new and interesting
IR applications and research directions.

7. EVALUATION PACKAGE
When performing IR research using a standard test col-

lection, it is essential to evaluate the retrieval performance
of the applied approaches. The open source version of Ter-
rier was designed to allow users to rapidly design and test
new retrieval functions and IR models. For this reason, we
implemented the evaluation tools in the TREC style with
a wide range of known IR measures. In particular, Terrier
includes and integrates the main evaluation functionalities
found in the trec eval tool, including, among others, calcu-
lating Mean Average Precision, Precision @ rank N , inter-
polated Precision, and R-Precision. It is also possible to
show the evaluation measures on a per-query basis.

The evaluation tools of Terrier allow easy testing of new
retrieval methodologies or approaches. Once the new ap-
proach has been integrated into Terrier, users can test it,
together with as many models as possible, against a test
collection. As soon as the system has terminated all the
runs, for each model, the file of the evaluation results can
be created and a summary is displayed.

8. STANDARD DEPLOYMENTS & SAMPLE
APPLICATIONS

Terrier 1.0.2 comes with two applications. Firstly, Ter-
rier comprises a complete application suite for performing
research using test collections. Terrier is easy to deploy on
the standard TREC test collections, e.g. the TREC CDs,
WT2G, WT10G, .GOV etc. This facilitates research on
these standard test collections. Table 3 shows “out-of-the-
box” retrieval performance scores of Terrier on standard test
collections, using title-only queries. The default settings in-
clude the removal of English stopwords and the application
of Porter’s stemming algorithm. During retrieval, the InL2
DFR weighting model is applied as is.

Secondly, Terrier comes with a proof-of-concept Desktop
Search application, shown in Figure 3. This shows how the
retrieval functionalities of Terrier can be easily deployed to
an application suitable for day-to-day retrieval tasks. All the
retrieval functionalities are easily accessible from the Desk-
top Search application, including Terrier’s query language
and query expansion.

Figure 3: Screenshot of the proof-of-concept Terrier
Desktop Search. It can index various types of com-
mon document formats, including Microsoft Office
documents, HTML and PDF files.

9. RESEARCH FACILITATED & LESSONS
LEARNED

The development of a test-bed framework allowing for the
rapid experimentation of new IR concepts/ideas has boosted
our research, yielding some significant insights into the be-
haviour of IR techniques on diverse, multilingual, and large-
scale collections. The system allowed us to successfully and
significantly participate in various TREC tracks such as the
Web tracks (2001-2004), the Robust tracks (2003, 2004),
the Terabyte tracks (2004-2005), and recently the Enter-
prise track (2005). In addition, we participated in various
tracks of CLEF7 in 2003-2005.

More importantly, in addition to being a vehicle for the
evaluation of our new search methods, the Terrier platform
allowed us to easily simulate, assess, and improve state-of-
the-art IR methods and techniques. This led to a better
understanding of the underlying issues related to the tack-
ling of different search tasks on various and diverse large
collections. In particular, we realised the need to build
parameter-free models, which avoid the constraint of using
costly parameter-tuning approaches based on relevance as-
sessment. The proposed DFR framework is not only an
efficient and effective IR model, but also a mechanism by
which we can explain and complement other existing IR ap-
proaches/techniques [1].

One of the main lessons learnt from building the Terrier
platform during the previous years is the fact that building
a sustainable, flexible and robust platform for information
retrieval is equally important as creating new IR models. In-
deed, research in an experimental field such as IR cannot be
conducted without a platform facilitating experimentation
and evaluation.

In developing a cutting-edge technology from a laboratory
setting to a product release, which was deployed in various
industrial applications and settings, we gained a much better
understanding of the challenges faced in tackling real large-
scale collections, not necessarily as clean as the TREC or
CLEF collections, and how to provide practical and effective
solutions under a high query workload.

Many benefits were achieved by releasing a core version
of the project as an open source software. By facilitating

7http://www.clef-campaign.org

a transparent and reproducible experimentation of various
retrieval methods, we believe that we achieved a greater im-
pact and visibility in the scientific community. We have
also built a community of users/developers around Terrier,
which helped improving the quality of the software and at-
tracted more researchers to the project. Since its release in
November 2004, the Terrier software has been downloaded
thousands of times from across the world, including major
commercial search engine companies.

Finally, the Terrier project has attracted many undergrad-
uate, postgraduate, and research students, and benefited
from their contributions. Building an IR platform is both a
research and engineering process, requiring team work and a
critical mass of developers. Terrier is currently the main de-
velopment platform for both undergraduate and postgradu-
ate students in our research group, allowing them to employ
a state-of-the-art framework in their learning and research.

10. CONCLUSIONS
In this paper, we described the open source version of

Terrier, a robust, transparent, and modular framework for
research and experimentation in Information Retrieval. The
platform was developed as part of an ongoing larger project,
ultimately aiming at becoming the European Search Engine,
with the state-of-the-art search technology for various search
tasks and applications.

Terrier is a mature and state-of-the-art platform, includ-
ing highly effective retrieval models, based on the DFR frame-
work. The performance of these models is at least compa-
rable to, if not better than, that of the most recent mod-
els, including on very large-scale test collections [14, 11].
In addition, Terrier’s DFR models are information-theoretic
models for both query expansion and document ranking, a
versatile and original feature that is not possessed by any
other IR model. Terrier is continuously expanded with new
models resulting from our research. Indeed, new research,
such as models for document structure and combination of
evidence [17], length normalisation methods [7], query per-
formance prediction [6, 9], NLP techniques [10], information
extraction [3], is being readily fed to Terrier. Furthermore,
Terrier is being used for research in enterprise and expert
search [11]. Retrieval from large-scale test collections has
also led us to study optimal distributed architectures for
retrieval systems [4, 5].

From an IR perspective, technological challenges may ren-
der an IR model obsolete very quickly (as has happened with
the Boolean or Vector Space model). We believe that a the-
oretical framework for Information Retrieval, when imple-
mented within a mature, robust and extensible IR system,
is destined to last. Our strong belief is that Terrier, as the
accumulator of innovative ideas in IR, and with its design
features and underlying principles, open source being one of
them, will make easier technology transfers.

11. ACKNOWLEDGEMENTS
The development of Terrier required a significant man-

power and infrastructure. We would like to thank those
many students and programmers who participated in devel-
oping Terrier. We would also like to thank the UK Engi-
neering and Physical Sciences Research Council (EPSRC),
project grant number GR/R90543/01, as well as the Lev-
erhulme Trust, project grant number F/00179/S, who have

partially supported the development of Terrier. Finally, we
thank the Department of Computing Science at the Univer-
sity of Glasgow, and Keith van Rijsbergen, for supporting
the Terrier platform at various stages of its development.

12. REFERENCES
[1] G. Amati. Probabilistic Models for Information

Retrieval based on Divergence from Randomness. PhD
thesis, Department of Computing Science, University of
Glasgow, 2003.

[2] G. Amati, C. Carpineto, and G. Romano. Query
Difficulty, Robustness, and Selective Application of
Query Expansion. In ECIR ’04: Proceedings of the 26th
European Conference on Information Retrieval
(ECIR’04), pages 127-137, Sunderland, UK, 2004.
Springer.

[3] G. Amati. Information Theoretic Approach to
Information Extraction. In Proceedings of the 7th
international conference on Flexible Query Answering
Systems (FQAS 2006), pages 519–529, Milan, Italy,
2006.

[4] F. Cacheda, V. Plachouras, and I. Ounis. A case study
of distributed information retrieval architectures to
index one Terabyte of text. Information Processing &
Management, 41(5):1141–1161, 2005.

[5] F. Cacheda, V. Carneiro, V. Plachouras, and I. Ounis.
Performance Analysis of Distributed Information
Retrieval Architectures Using an Improved Network
Simulation Model. Information Processing &
Management (to appear).

[6] B. He, and I. Ounis. Inferring Query Performance
Using Pre-retrieval Predictors. In Proceedings of the
11th Symposium on String Processing and Information
Retrieval (SPIRE 2004), Padova, Italy, 2004.

[7] B. He, and I. Ounis. A study of the Dirichlet priors for
term frequency normalisation. In SIGIR ’05:
Proceedings of the 28th annual international ACM
SIGIR conference on Research and Development in
information retrieval, pages 465–471, Salvador, Brazil,
2004.

[8] B. He, and I. Ounis. Term Frequency Normalisation
Tuning for BM25 and DFR Models. In ECIR ’05:
Proceedings of the 27th European Conference on
Information Retrieval (ECIR’05), pages 200–214,
Santiago de Compostela, Spain, 2005. Springer.

[9] B. He, and I. Ounis. Query Performance Prediction. In
Information Systems, Elsevier, 2006 (In press).

[10] C. Lioma, and I. Ounis. Examining the Content Load
of Part-of-Speech Blocks for Information Retrieval. In
Joint Conference of the International Committee on
Computational Linguistics and the Association for
Computational Linguistics, (COLING/ACL 2006),
Sydney, Australia, 2006.

[11] C. Macdonald, B. He, V. Plachouras, and I. Ounis.
University of Glasgow at TREC2005: Experiments in
Terabyte and Enterprise Tracks with Terrier. In TREC
’05: Proceedings of the 14th Text REtrieval Conference
(TREC 2005), November, 2005, NIST.

[12] I. Ounis, G. Amati, Plachouras V., B. He,
C. Macdonald, and D. Johnson. Terrier Information
Retrieval Platform. In Proceedings of the 27th European
Conference on IR Research (ECIR 2005), volume 3408

of Lecture Notes in Computer Science, pages 517–519.
Springer, 2005.

[13] V. Plachouras, and I. Ounis. Usefulness of hyperlink
structure for query-biased topic distillation. In SIGIR
’04: Proceedings of the 27th annual international ACM
SIGIR conference on Research and Development in
information retrieval, pages 48–455, Sheffield, UK,
2004.

[14] V. Plachouras, B. He, and I. Ounis. University of
Glasgow at TREC2004: Experiments in Web, Robust
and Terabyte tracks with Terrier. In TREC ’04:
Proceedings of the 13th Text REtrieval Conference
(TREC 2004), November 2004, NIST.

[15] V. Plachouras, I. Ounis, and G. Amati. The Static
Absorbing Model for the Web. Journal of Web
Engineering, 4(2):165–186, 2005.

[16] V. Plachouras, F. Cacheda, and I. Ounis. A Decision
Mechanism for the Selective Combination of Evidence
in Topic Distillation. Information Retrieval,
9(2):139–163, 2006.

[17] V. Plachouras. Selective Web Information Retrieval.
PhD thesis, Department of Computing Science,
University of Glasgow, 2006.

[18] J. M. Ponte and W. B. Croft. A language modelling
approach to information retrieval. In SIGIR ’98:
Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 275–281, Melbourne,
Australia, 1998.

[19] J. Rocchio. Relevance feedback in information
retrieval. In The Smart Retrieval system - Experiments
in Automatic Document Processing, In Salton, G., Ed.
Prentice-Hall Englewood Cliffs. NJ.313-323, 1971.

[20] I.H. Witten, A. Moffat, and T.C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, 1999.

