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Dynamic pruning strategies for information retrieval systems can increase querying efficiency without
decreasing effectiveness by using upper bounds to safely omit scoring documents that are unlikely to make
the final retrieved set. Often, such upper bounds are pre-calculated at indexing time for a given weighting
model. However, this precludes changing, adapting or training the weighting model without recalculating
the upper bounds. Instead, upper bounds should be approximated at querying time from various statistics
of each term to allow on-the-fly adaptation of the applied retrieval strategy. This article, by using uniform
notation, formulates the problem of determining a term upper-bound given a weighting model and discusses
the limitations of existing approximations. Moreover, we propose an upper-bound approximation using a
constrained nonlinear maximization problem. We prove that our proposed upper-bound approximation does
not impact the retrieval effectiveness of several modern weighting models from various different families.
We also show the applicability of the approximation for the Markov Random Field proximity model. Finally,
we empirically examine how the accuracy of the upper-bound approximation impacts the number of postings
scored and the resulting efficiency in the context of several large Web test collections.
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1. INTRODUCTION

Web search engines allow billions of documents to be searched, with near-instantaneous
response time. To achieve this, they must exploit efficient retrieval techniques to min-
imize the time and resources required to score documents for queries. Web searchers
often look only at the top few pages of results for a query [Silverstein et al. 1998]. For
this reason, the complete scoring of every document that contains at least one query
term causes unnecessary latency, because not all of these documents will make the top
retrieved set of documents that the user will view.
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Query-pruning strategies can increase efficiency by removing the low-scoring docu-
ments in the early stages of the query-scoring process. Some pruning strategies are
safe-up-to-rank-K [Turtle and Flood 1995], meaning that the ranking of documents up
to rank K will have full possible effectiveness, but with increased efficiency. In contrast,
a strategy that can incorrectly rank documents before rank K is only approximate. As
information retrieval (IR) is primarily concerned with effectiveness, in this work, we
consider only safe-up-to-rank-K pruning strategies.

Pruning strategies can be implemented statically by altering the index structure at
index construction time [Blanco 2008], or dynamically, at query scoring time. These
safe-up-to-rank-K dynamic pruning strategies rely on maintaining a threshold score
that documents must overcome in order to be considered in the top-K documents. To
exploit this threshold, these strategies require that each term is associated with an
upper bound on the maximal contribution of the weighting model to any document’s
relevance score. If the query terms present in a document do not have a cumulative
upper bound higher than the current threshold, the document can be safely ignored.

Two methods for computing term upper bounds exist: first, the exact least upper
bound may be calculated for all terms at indexing time using a particular weighting
model [Broder et al. 2003; Croft et al. 2009]; second, the upper bound for each query
term may be approximated as accurately as possible at retrieval time using various
statistics of the term, without the need for precomputation.

In most of the previous research and application of efficient retrieval, all the re-
turned search results of queries are ranked using a single weighting model. In such
scenarios, the term upper bounds can be precomputed at index-building time, tying
the IR system to a single or several preselected weighting models. However, recently
there has been a trend towards selective approaches to information retrieval in which
the exact retrieval approach taken for each query varies. For instance, recent works
[Kang and Kim 2003; Geng et al. 2008] showed that it was beneficial to exploit differ-
ent ranking models for different queries, calling this process query-dependent ranking.
The context of a search query often provides a search engine with meaningful hints
to better answer the current query [Xiang et al. 2010]. Indeed, the task of query seg-
mentation [Bendersky et al. 2009] results in different weighting schemes for a term
depending on the context represented by the remaining query terms. Then the param-
eters of the weighting model, or the weighting-model itself, may require changing [Li
et al. 2009] to allow per-query alterations of the weighting model setting, as per [He
and Ounis 2004] or online adaptation of its parameters [Taylor et al. 2006]. In such
selective retrieval approaches, the precalculation of upper bounds at indexing time
may not be sufficiently agile. Instead, approximations of the term upper bounds at re-
trieval time represent a valid alternative to indexing time precomputation of the upper
bounds.

In this work, we study the accurate approximation of the upper bounds of weighting
models suitable for the MAXSCORE and WAND dynamic pruning strategies. The accuracy
of the upper-bound approximations are important, as they can impact the effectiveness
or the efficiency of query-scoring strategies: too high, and some documents will be
unnecessarily scored (reduced efficiency); too low, and some documents will not be fully
scored (unsafe, reduced effectiveness). While the calculation of least upper bounds
may have been trivial in the past for simple TF.IDF weighting models, their accurate
approximation for modern, non-trivial weighting models is unclear. In particular, one
approximation involving a parameter was proposed for weighting models based on
each term’s IDF [Broder et al. 2003]. However, this approximation is inapplicable for
weighting models such as those from language modeling [Zhai and Lafferty 2004] and
Divergence From Randomness (DFR) [Amati 2006], which cannot be suitably factored
into document-variant and document-invariant parts.
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Hence, it is clear that the approximation of upper bounds for other weighting models
is an open problem. In this paper, we propose a new upper-bound approximation, and
prove that is safe for several recent weighting models by the application of a constrained
nonlinear maximization problem. This upper-bound approximation can be calculated
on-the-fly at query execution time. By adopting the proposed safe upper-bound approxi-
mation, search engines can experience enhanced efficiency without loss of effectiveness.
The contributions of this article are as follows: we review existing upper bounds us-
ing a uniform notation; we show how the upper-bound approximation problem can be
modeled as a constrained nonlinear maximization problem; we study the problem with
three representative weighting models and derive an upper-bound approximation that
is proven to be safe; we examine the extent to which the upper-bound approximations
approach a ground truth of the actual least upper-bound, by measuring their efficiency
for several dynamic pruning strategies using many queries on two different large-scale
TREC test collections; lastly, we investigate the approximation of upper bounds for a
state-of-the-art term proximity model.

In the remainder of this article, Section 2 reviews dynamic pruning strategies.
Section 3 reviews existing approximations for upper bounds using a uniform notation.
We tackle the upper-bound approximation problem for three weighting models using
constrained nonlinear maximization in Section 4. Section 5 contains experiments on
the efficiency of the approximations. In Section 6, we examine the appropriateness
of upper-bounding proximity weighting models. We provide concluding remarks in
Section 7.

2. DYNAMIC PRUNING

In most IR systems, the relevance score for a document d given a query Q follows the
general outline given by the best match strategy:

scoreQ(d, Q) = ω S(d) + κ
∑
t∈Q

score(t fd, ∗d, ∗t), (1)

where S(d) is the combination of some query-independent features of the document
d (e.g. PageRank, URL length), and score(t fd, ∗d, ∗t) is the application of a weighting
model to score t fd occurrences of term t in document d. ∗d denotes any other document
statistics required by a particular weighting model, such as document length. Orthog-
onally, ∗t represents any statistics of the term necessary for the weighting model, such
as the number of documents in which the term occurs, so that IDF can be calculated.
More than one static feature may be applied to compute the static score S(d), with
learning-to-rank techniques [Liu 2009] used to find appropriate weights for the fea-
tures (e.g. ω, κ). In this article, we focus on the effective and efficient calculation of
score(t fd, ∗d, ∗t), yet our experiments also consider when static features are and are not
present in the final ranking function.

The scoring of a document as per Equation (1) requires processing the postings lists of
each query term in the inverted index. The algorithms to match and score documents
for a query fall into two main categories [Moffat and Zobel 1996]: in term-at-a-time
(TAAT) scoring, the query term posting lists are processed and scored in sequence, so
that documents containing term ti gain a partial score before scoring commences on
term ti+1. In contrast, in document-at-a-time (DAAT) scoring, the query term postings
lists are processed in parallel, such that all postings of document dj are considered
before scoring commences on dj+1. Compared to TAAT, DAAT has a smaller memory
footprint than TAAT due to the lack of maintaining intermediate scores for many
documents, and is reportedly applied by large search engines [Anagnostopoulos et al.
2005].
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Fig. 1. How the DAAT MAXSCORE strategy processes a document.

An alternative strategy to DAAT and TAAT is score-at-a-time [Anh and Moffat 2001];
however, this is suitable only for indices sorted or partially sorted by document impor-
tance, which must be calculated before the actual query processing. Hence, this strat-
egy shares the limitations of other static-pruning strategies; for example, it precludes
on-the-fly adaption to support different ranking models or parameters.

To increase the efficiency of full-scoring TAAT or DAAT, two dynamic pruning strate-
gies for TAAT and DAAT which are safe-up-to-rank-K were proposed by Turtle and
Flood [1995], which increase efficiency by early termination of document scoring. In
DAAT MAXSCORE, the scoring of a document is omitted if it is possible to guarantee
that the document will never obtain a score greater than the minimum score of the
current top-K documents. The algorithm keeps track of the K-th largest document
score observed as a threshold that candidate documents must exceed before they can
enter the partial ranking. Moreover, the actual scoring of each document is optimized,
as explained with the help of Figure 1.

In Figure 1, the terms t1 · · · t4 are ordered by decreasing document frequency. Each
term has an upper bound on the maximum score that any document containing the
given query term can obtain. When a document is processed, its approximate score
is initially assumed to be the sum of the approximate scores of terms appearing in
the same document. Then, the approximate score is updated each time a posting is
processed, using the exact score instead of the approximate one. As soon as the ap-
proximate score falls below the current threshold, the current document is guaranteed
that it can not make it into the top K, so no more postings with the same document
require scoring and the algorithm can move on to the next document. Analogously, in
TAAT MAXSCORE, no new terms are scored for retrieval once it is possible to guarantee
that any new document can never obtain a score greater than the minimum score of
the current top-K partially scored documents. Both strategies are safe-up-to-rank-K,
meaning that retrieval effectiveness cannot be impaired by the application of these
strategies, while markedly improving efficiency [Turtle and Flood 1995]. An improved
version of TAAT MAXSCORE has been proposed by Persin [1994], where two thresholds
rule the insertion of new partial scores in the top-K results and their partial score up-
date. Although this strategy shows good efficiency improvements, the heuristics used
to determine the thresholds lead to potentially unsafe-up-to-rank-K results.

The choice of query semantics deployed by the search engines can impact both re-
trieval safeness and efficiency. In particular, in conjunctive processing (where all query
terms must exist in a retrieved document), recall can be negatively impacted. Indeed,
a relevant document may not be retrieved even though it contains all but the least
important query term. However, conjunctive processing allows pruning to take place
more aggressively, as documents that do not contain a query term can be discarded
immediately [Moura et al. 2008; Skobeltsyn et al. 2008; Altingovde et al. 2009]. In this
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Fig. 2. How the WAND strategy selects the next document to score.

article, we focus exclusively on disjunctive retrieval, as recently it has been shown not
to produce significantly different high-precision effectiveness compared to conjunctive
retrieval [Craswell et al. 2011]. Nevertheless, the work in the following sections on
term upper bounds is equally applicable to conjunctive processing. We intend to exper-
imentally compare and contrast the effect of term upper bounds for conjunctive and
disjunctive processing in future work.

DAAT WAND [Broder et al. 2003]—the most recent safe-up-to-rank-K dynamic prun-
ing strategy—is only suitable for disjunctive query processing, but works by determin-
ing how close to conjunctive processing can be obtained for a given query without loss
of effectiveness. Similarly to MAXSCORE, WAND maintains the current top-K documents
and a threshold equal to their minimum score. For any new document, WAND calculates
an approximate score, summing up the upper bounds for the terms occurring in the
document. If this approximate score is greater than the current threshold, then the
document is fully scored. It is then inserted in the top-K candidate document set if this
score is greater than the current threshold, and the current threshold is updated. If
the approximate score check fails, the next document is processed. The selection of the
next document to score is optimized and explained with the help of Figure 2.

In Figure 2, the set of posting lists for the terms t1 · · · t4 are maintained in increas-
ing order of the docid that each posting list currently refers to. Then a pivot term is
computed, that is, the first term for which the accumulated sum of upper bounds of
preceding terms and itself exceeds the current threshold (e.g., term t3 with accumu-
lated score of 7). The corresponding docid in the posting list of the pivot term identifies
the pivot document, that is, the smallest docid having a chance to overcome the current
threshold. If the current docids of the previous terms are equal to the pivot document
docid, the document will be fully scored. Otherwise, the posting list of one of the pre-
ceding terms is moved to the pivot document docid, and the procedure is repeated. In
the example, a good candidate document is found at the third step (23) and is fully pro-
cessed. In contrast to DAAT MAXSCORE, DAAT WAND can benefit from skipping every
posting list to a particular document to reduce disk IO.

Algorithms similar to dynamic pruning strategies have also been proposed in the
database research community—such as Fagin’s algorithm, the threshold algorithm,
and the no random-access algorithm [Fagin et al. 2003]. While based on the same
thresholding mechanism, these assume that the posting lists are sorted in descending
order of score (in a similar manner to static pruning), and in some cases require random
access to the posting list. In contrast, IR systems access postings lists in a sequential
manner to minimise disk seek overheads [Moffat and Zobel 1996].

TAAT MAXSCORE, DAAT MAXSCORE, and DAAT WAND all rely on maintaining a thresh-
old score at query scoring time that documents must overcome to be considered in the
top-K documents. To guarantee that an early termination by the dynamic pruning
strategy will provide the correct top-K documents, it is necessary to calculate, for each
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term, an upper bound on its maximal contribution to the score of any document in its
posting list. In the following section, we use a uniform notation for expressing upper
bounds and their approximations, and discuss the limitations of existing approxima-
tions, in particular with respect to their appropriateness for modern weighting models.

3. ANALYSIS OF EXISTING UPPER BOUNDS

In this section, we describe a uniform notation for defining the upper bounds for a
term, formulate existing methods for obtaining upper bounds within this notation, and
discuss their limitations. In particular, an upper bound for term t is denoted σ (t). Within
this section, we review the two main methods for obtaining upper bounds: the least
upper bound for a given weighting model can be empirically determined at indexing
time (Section 3.1); alternatively, an upper bound can be approximated at querying time
using appropriate statistics (Section 3.2).

3.1. Least Upper Bounds

The least upper bound (that would be observed for all occurrences of a term) for all
terms may be obtained at indexing time, given prior knowledge of the weighting model
and a scan of the posting list of each term [Broder et al. 2003]. In particular, the least
upper bound σLEAST(t) for term t, is obtained using all documents in the posting list L(t)

σLEAST(t) = max
d∈L(t)

score(t fd, ∗d, ∗t), (2)

where score(t fd, ∗d, ∗t) is the score given by a weighting model for t fd occurrences of
term t in document d. ∗d denotes any other document statistics required by a particular
weighting model, such as document length (which we denote ld). ∗t represents any
statistics of the term necessary for the weighting model, such as IDF.

However, the traversal of an entire index to determine the least upper bound for
each term has some disadvantages: first, such pre-computation may add overhead to
the indexing phase, as the entire inverted index must be traversed and scores recorded
for every weighting model likely to be used during retrieval.1

Moreover, the precomputation means that the pre-specified settings of the weighting
model(s) cannot be altered. However, increasingly, selective retrieval approaches are
being devised which apply different rankings for different queries. For example, using
one ranking model for all the queries cannot be a suitable solution to conquering
the search ranking challenge [Zhu et al. 2009]. As was also found by Kang and Kim
[2003], a good ranking algorithm for an informational does not always perform well for
a homepage finding task. Inspired by these observations, if queries could be divided
properly into different groups, it is possible to design different ranking models for each
group to improve the search ranking. A more recent work [Geng et al. 2008] showed
that it was beneficial to exploit different ranking models for different queries, calling
this process query-dependent ranking, and in He and Ounis [2004] weighting models
are adapted on-the-fly for different queries. Moreover, the context of a search query
often provides a search engine with meaningful hints for better answering the current
query [Xiang et al. 2010]. Indeed, the task of query segmentation [Bendersky et al. 2009]
results in different weighting schemes for a term depending on the context represented
by the remaining query terms, and the weighting models can be trained online in light
of new relevance data [Croft et al. 2009].

1For instance, prescoring an index of the 50 million English documents from the TREC ClueWeb09 collection
to obtain least upper bounds takes 40 min on a single machine.
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If all weighting models and their parameter settings2 are identified in advance, then
the precomputation of upper bounds for all models is feasible. However, instead of the
precomputation of upper bounds, this work centers on the alternative of approximating
the upper bounds at querying time, allowing the IR system to be more agile and flexible.

3.2. Upper-Bound Approximations

This work concerns the approximation (e.g., A, σA(t)) of upper bounds, using statistics
of t and some knowledge of the applied weighting model, such that σLEAST(t) ≤ σA(t).
Such statistics can be easily computed at indexing time, without prior knowledge of
the weighting model to be applied at retrieval time.

First, we note that Fang et al. [2004] describe various heuristics that are common
to effective weighting models, relating to the effects of varying t fd, ld, and term statis-
tics. These heuristics include several that are of interest in obtaining upper-bound
approximations.

TFC1. Favour a document with more occurrences of a query term than one with less
(assuming equal document lengths).

TFC2. Ensure that the change in the score caused by increasing t fd from 1 to 2 is
larger than that caused by increasing t fd from 100 to 101 (assuming equal document
lengths).

LNC1. Penalize long documents (assuming equal t fd).

In the following, we describe how various upper bounds can be approximated, refer-
ring back to these heuristics when appropriate. The accurate approximation of these
upper bounds is critical to the efficiency and effectiveness of the TAAT MAXSCORE,
DAAT MAXSCORE, and DAAT WAND strategies. In particular, using term upper bounds,
the strategy can know when it is not worth scoring a given posting for a particular
term, as even the maximal contribution that the term could give would not impact
the final top-K ranked documents. However, if a term upper bound is too high, then
some postings will be needlessly scored, when they would not have any impact on
the top ranking of K results. If a term upper bound is too low, then some postings
may incorrectly be omitted from scoring, potentially impacting on the ranking of the
top-K results—making the method only approximate instead of safe-up-to-rank-K.
Conversely, σA(t) = ∞ would be safe, but very inefficient, as it would prevent any
pruning from taking place. In approximating the upper bounds, we desire the smallest
σA(t) ≥ σLEAST(t), to ensure safeness, but maximize efficiency.

Term upper bounds were first proposed by Turtle and Flood [1995], in relation to the
MAXSCORE approaches. However, the authors did not discuss the calculation of these
upper bounds. We assume that the calculations of such upper bounds were determined
as trivial in the presence of simple TF.IDF models, which did not account for the length
of documents (i.e., LNC1 was not considered). In particular, for TF.IDF, score(t fd, ∗d, ∗t)
is monotonically increasing as t fd → ∞, as specified by TFC1. Hence the least upper
bound is easily found using the maximum term frequency of term t in its posting list
L(t) (maxd∈L(t) t fd):

σLEAST:TFIDF(t) = score
(

max
d∈L(t)

t fd, ∗d, ∗t

)
, (3)

where t fd is the term frequency of term t in document d, and ∗d is empty (i.e. document
length is not required).

2We note that for many weighting models, the effect of varying its parameters will have an unquantifiable
effect on the least upper bound values for terms. Hence, least upper bounds must be calculated for each
applied parameter setting.
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However, modern weighting models often account for document length (ld), in the
manner of LNC1. In this case, the approximation of the term upper bounds needs
to account for document length, and/or infer upper bounds using knowledge of the
weighting model. Due to the interaction of TFC1 and LNC1, it is hard to analytically
determine σLEAST(t) for such weighting models. Instead, for instance, in Broder et al.
[2003], the authors of WAND observed that score(t fd, ∗d, ∗t) can be factored into a product
w(t fd, ∗d) · w(∗t). While the authors do not specify the weighting model that they use,
they state that w(∗t) reflects the IDF component of the weighting model. We note that
TF.IDF and BM25 [Robertson et al. 1992] can be factored in this manner, with w(t fd, ∗d)
reflecting the factor which varies with d. Then, an approximate upper bound can be
found:

σFactor(t) = C · w(t), (4)

for some tunable constant C. We call this approximation Factor. The experiments
described in Broder et al. [2003] did not tune C, as it depends on the weighting model
applied. Instead, a factor on the current threshold score (which has an inverse relation
to C) was varied, demonstrating for the WT10G collection the efficiency/effectiveness
tradeoffs for aggressive but approximate pruning. Hence, the proper setting of C to
achieve a safe supremum of σ (t) was not investigated. It is of note that Broder et al.
[2003] did not discuss the use of maxd∈L(t) t fd in calculating approximate upper bounds.
For example, the upper bounds of BM25 (see Equation (7)) can be approximated by
σFactor:BM25(t) = C · (k1 + 1) · (k3+1)qtf

k3+qtf log2
N−Nt+0.5

Nt+0.5 .
Later, in Lacour et al. [2008], the upper bounds were approximated for the BM11

weighting model which does consider document length ld, by replacing ld with the
average length of all documents avg l:

σAVGDL(t) = score(max
d∈L(t)

t fd, avg l, ∗t). (5)

In doing so, this approximation (AVGDL) assumes a uniform document length for every
posting. However, in their experiments, the retrieval performance of safe-up-to-rank K
techniques were impacted at rank K, inferring that strategies such as TAAT MAXSCORE

and DAAT MAXSCORE were being impacted by inexact approximation of the term upper
bounds, causing the strategies to become approximate strategies only, and negatively
impacting effectiveness.

All of the existing methods to find upper bounds have limitations: σTFIDF(t) makes no
consideration of document length; Factor is limited to weighting models which can be
suitably factored—in particular, it is inapplicable to weighting models such as those
from language modelling (LM) [Zhai and Lafferty 2004] and Divergence From Random-
ness (DFR) [Amati 2006]; in contrast, AVGDL may be inexact and not safe. In the next
section, we model the term upper-bound approximation problem and perform a math-
ematical proof of the safeness of upper-bounds for several state-of-the-art weighting
models.

4. NEW UPPER-BOUND APPROXIMATIONS

Modern weighting models, such as BM25 and those from the language modeling and
DFR families, take into account document length (ld) in addition to the term frequency
(t fd), either as part of a document length normalization process (LNC1), or as part
of maximum likelihood estimation ( t fd

ld
). In these cases, σLEAST(t) cannot be exactly

calculated using the maxd∈L(t) t fd alone without any knowledge of the weighting model.
To counteract the limitations of the Factor and AVGDL approximations, we formulate,

in general terms, the problem of approximating a term upper bound given the weighting
model. We study the problem for three weighting models from three different families
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and propose a new upper bound suitable for these weighting models. In particular,
we focus on: BM25 [Robertson et al. 1992]—an example of a TF.IDF-based weighting
model with document length normalization; Dirichlet language modeling (LM) [Zhai
and Lafferty 2004]—which smooths the maximum likelihood ( t fd

ld
) using the probability

of occurrence in the collection; and the parameter-free DLH13 [Amati 2006] from the
DFR family of weighting models—which also includes document length normalization.

To simplify the notation, in the following we use x to denote t fd, y to denote ld and
Greek letters (α, β, γ ) to denote strictly positive constants.

Given a general weighting model f (x, y) depending on term frequency (x) and docu-
ment length (y), the problem of finding an upper bound for f (x, y) can be formulated
as a constrained maximization problem (CMP) [Jongen et al. 2004]:

max f (x, y), subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ≤ y,

xmin ≤ x ≤ xmax,

ymin ≤ y ≤ ymax,

x, y ∈ N,

(6)

where xmin > 0, ymin > 0, xmax > xmin, ymax > ymin, xmax > ymin, and ymax > xmax
are reasonable assumptions for any real world IR system and document corpus. For
instance, an IR system based on an inverted index will not score documents where
a query term does not occur (hence xmin > 0), and similarly, empty documents (i.e.
ymin = 0) will not be scored. Moreover, for any given document, any term can appear a
number of times not greater than the total number of tokens in the document (x ≤ y).
Finally, the upper bound on the number of occurrences on a given term in any document,
and the length of any document in a posting list are finite (x ≤ xmax, y ≤ ymax) and
countable. Without loss of generality, we assume xmin = ymin = 1. These constraints
define the admissible region of the problem, that is, the area of the x, y plane where
the term statistics have acceptable values.

Our approach for approximating upper bounds uses statistics for each term (e.g.,
xmax, ymax), and uses these to calculate the score of a special document which would
define an upper bound on the score of any permissible posting for that term. These
statistics are easily calculable at indexing time, and not specific to any particular
weighting model or setting. Then, based on the CMP defined by the constraints in
Equation (6), we analyze to determine the position of the special document in the x, y
plane which has maximal score. Such a special document probably does not exist, and
hence the least upper bound will lie at some other point inside the admissible region;
nevertheless, the approximate upper bound is guaranteed to be safe.

The CMP defined above is integral and nonlinear, and hence very difficult to manip-
ulate. Since we are interested in an approximate upper bound, we relax the problem by
removing the x, y ∈ N constraint. In this case, the admissible region defined by the re-
maining constraints is regular because the constraints are affine [Jongen et al. 2004].
Hence, the problem can be studied using constrained optimization methods. In the
following, we study the analytical behaviour of the BM25, LM, and DLH13 weighting
models on the relaxed admissible region, and analytically derive the solutions of the
relaxed constrained maximization problems by using first order differential calculus.

In BM25 [Robertson et al. 1992], the relevance score of a document d for a query
term t is given by

score(x, y, Nt) = (k1 + 1)x
k1((1 − b) + b y

avg l ) + x
(k3 + 1)t fq

k3 + t fq
w(1), (7)
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Fig. 3. Admissible region for the relaxed CMP.

where t fq is the frequency of the query term t in the query; b, k1, and k3 are parameters
(defaults b = 0.75, k1 = 1.2, and k3 = 1000 [Robertson et al. 1992]). w(1) is the IDF
factor, which is given by w(1) = log2

N−Nt+0.5
Nt+0.5 . N is the number of documents in the

whole collection. Nt is the document frequency of term t.

THEOREM 1. The solution of the relaxed CMP for Equation (7) is given by x = xmax
and y = xmax.

PROOF. Equation (7) can be conveniently rewritten as

f (x, y) = β
(k1 + 1)x

k1
(
(1 − b) + b y

α

) + x
= β ′x

x + α′y + γ
,

where α′ = k1b
avg l , β ′ = (k1 + 1) (k3+1)t fq

k3+t fq
w(1), γ = k1(1 − b). It can be seen that this

function is strictly monotonically decreasing in y, as suggested by LNC1, and strictly
monotonically increasing in x, as per TFC1.

Figure 3 is a graphical representation of the constraints in Equation (6). The shaded
region identifies the admissible region where the maximum point must lie, bounded
by 1 ≤ x ≤ xmax, 1 ≤ y ≤ ymax, and y ≥ x. The segment of y = x within these bounds
is denoted AB. Next, because f (x, y) is monotonically decreasing in y and strictly
monotonically increasing in x, it follows that the maximum of Equation (7) is reached
on the segment AB, because for any other point in the admissible region, it is always
possible to find another point closer to AB with a greater value of f (x, y). Along the
segment AB (where y = x), we have

f (x, y)
∣∣∣∣
y=x

= f (x) = β ′x
(1 + α′)x + γ

,

∂ f
∂x

∣∣∣∣
y=x

= df
dx

= β ′γ
((1 + α′)x + γ )2 .

Hence, for y = x, f (x) has a positive, continuous derivative, meaning that its maximum
is reached at B, where x = xmax and y = xmax.

In Dirichlet language modeling [Zhai and Lafferty 2004], the maximum likelihood of
a term t occurring in the document model is smoothed to the collection model. Applying
a log transformation to convert the product of probabilities into a summative best
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match model results in

score(x, y, Ft) = t fq · log
(

(1 − λLM)
x
y

+ λLM
Ft

TC

)
, (8)

where TC is the number of tokens in the collection, Ft is the frequency of the query
term in the collection, and λLM = μ

μ+y is the form of the Dirichlet smoothing (where μ

is a positive parameter).

THEOREM 2. The solution of the relaxed CMP for Equation (8) is given by x = xmax
and y = xmax.

PROOF. Equation (8) can be conveniently rewritten as

f (x, y) = t fq · log
(

x + βμ

y + μ

)
,

where β = Ft
TC

< 1. This function is strictly monotonic increasing in x and strictly
monotonic decreasing in y because they appear only in the numerator and denominator
of the logarithm function, respectively. Then, according to the same discussion as for
Theorem 1, its maximum lies on the AB segment from Figure 3. Then we have

f (x, y)
∣∣∣∣
y=x

= f (x) = t fq · log
(

x + βμ

x + μ

)
,

∂ f
∂x

∣∣∣∣
y=x

= df
dx

= (1 − β)μ
x2 + (β + 1)μx + βμ2 .

Next, as μ > 0 [Zhai and Lafferty 2004] and β < 1, the derivative is always positive for
x > 0. Then, f (x) is increasing along the segment AB and is maximal for x = xmax and
y = xmax.

The DLH13 weighting model is a generalization of the parameter-free hypergeomet-
ric DFR model in a binomial case [Amati 2006], given as

score(x, y, Ft) = t fq

x + 0.5

(
x log2

(
x · N · avg l

y · Ft

)

+ 1
2

log2

(
2πx

(
1 − x

y

)))
, (9)

where avg l is the average document length, calculated over the whole collection.
Notably, DLH13 is parameter-free.

THEOREM 3. The solution of the relaxed CMP for Equation (9) is given by x = xmax

and y = xmax + 1
2 .

PROOF. With the change of variable z = x
y , Equation (9) can be conveniently rewritten

as

f (x, z) = t fq

x + 0.5

(
x log2(βz) + 1

2
log2(2πx(1 − z))

)
,

where β = N·avgl
Ft

. Deriving f (x, z) w.r.t z, we obtain

∂ f
∂z

= t fq

ln 2
(2x + 1)z − 2x
z(2x + 1)(z − 1)

.

ACM Transactions on Information Systems, Vol. 29, No. 4, Article 17, Publication date: November 2011.



17:12 C. Macdonald et al.

This derivative is 0 when z = 2x
2x+1 corresponds to the line y = x + 1

2 . This line is just 0.5
units above the constraint y = x, and it lies inside the admissible region. It is easy to
verify that, for a fixed x = x∗, the point y∗ = x∗ + 1

2 is a maximum point for the function
f (x∗, y). Following the BM25 analysis, we can now study the function:

f (x, y)
∣∣∣∣
y=x+ 1

2

= f (x) = t fq

x + 0.5

(
x log2

(
β

2x
2x + 1

)

+ 1
2

log2

(
π

2x
2x + 1

))
.

It is easy to see that this function is monotonically increasing, hence the maximum is
reached when x = xmax, with the corresponding y = xmax + 1

2 .

Note that the upper bound-approximation for DLH13 is almost identical to that
found for BM25 and LM. The 1

2 quantity takes into account the fact that DLH13 is
undefined on the line y = x. Hence, we can summarize the results by proposing the
following approximation:

σMAXTF(t) = score(xmax, xmax + τ, t), (10)

where τ = 0 for BM and LM and τ = 1
2 for DLH13. (Note that while τ = 1

2 is math-
ematically founded for DLH13, in general, τ > 0 may be suitable for other weighting
models that are undefined when x = y.)

The approximate upper bounds identified by the previous analysis are ‘optimal’ in
the admissible region, that is, the largest value possible subject to the constraints of
the relaxed CMP. However, in general they are unlikely to coincide with the least upper
bounds calculated explicitly over all occurrences of a term in a posting list. Moreover,
these bounds are ‘pessimistic’—for example, in a two-term query, we are assuming the
existence of a document entirely composed by the first term and a document entirely
composed by the second term. However, should these documents exist, it is feasible
that the documents would reach the top-K documents, if the pruning threshold is low
enough.

Nevertheless, the application of these upper bounds permits these weighting models
to be applied in a safe manner, because no other occurrence of a term can have a score
larger than the proposed upper bound. It is of note that the only statistic required
to be stored at indexing time is the maximal term frequency xmax, which is easily
calculable at indexing time without prior knowledge of the weighting model or any
parameters. The extent to which the upper bounds overestimate the least upper bound
σLEAST(t) will depict the number of postings that will be extraneously scored, and impact
efficiency. The extent that this occurs will be empirically investigated in the next
section, using thorough experiments on two standard TREC test collections. Success
can be interpreted by the efficiency of dynamic pruning strategies applied, measured
in terms of postings scored and in average query latency.

In general, our results may be extended to other weighting models with the following
properties: the score is monotonically increasing with respect to term frequency (TFC1)
and monotonically decreasing with respect to document length (LNC1). For example,
the analysis outlined in Theorem 2 can be carried out for a LM model using Jelinek-
Mercer smoothing, obtaining identical results. However, this might not be suitable for
some weighting models; for example, models which hinder cannot easily be derived in
closed form (e.g., PL2 from DFR, which uses approximations for the binomial function).
Nevertheless, for such models, it may be possible to use a more sophisticated approach,
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Table I. Applied TREC Web Test Collections

Collection # Documents # Terms Queries
GOV2 25,205,179 15,466,363 TREC 2005-2007 Terabyte
CW09B 50,220,423 74,238,222 TREC 2009 Web

such as using second order conditions [Jongen et al. 2004]—which we leave to future
work.

5. APPROXIMATIONS EVALUATION

In the following, we test the accuracy and efficiency of the approximation presented in
Section 4 when applied to the three dynamic pruning strategies that we test (namely
TAAT MAXSCORE, DAAT MAXSCORE, and DAAT WAND). In particular, the accuracy of
the approximations will affect the number of postings scored by the various dynamic
pruning strategies, and hence impact on their overall efficiency. In this section we
address the following research questions.

(1) What is the numerical accuracy of the approximations, measured in terms of cor-
rectness of the upper-bound approximation and the average overestimation; that
is, by how much does the approximation exceed the actual upper bounds σLEAST(t)?

(2) For different dynamic pruning strategies and safe-to-rank-K values, how many
extra postings does each upper-bound approximation cause to be scored, compared
to the actual upper bounds σLEAST(t)?

(3) How efficient are the dynamic pruning strategies when using these upper bounds
compared to the actual upper bounds σLEAST(t)?

(4) How does the introduction of static scores (such as PageRank) into the retrieval
process impact the upper-bound approximations?

Section 5.1 defines the experimental setup. Section 5.2 addresses the first research
question by examining the numerical accuracy of the approximations. Section 5.3 exam-
ines how the accuracy of the approximations impacts the number of postings actually
scored by the various dynamic pruning strategies (research question 2). Section 5.4
examines the resulting efficiency in terms of average query response time (research
question 3). Finally, in Section 5.5 we address research question 4 by examining the
impact of adding static scores to the retrieval process.

5.1. Experimental Setting

Experiments are performed using the three weighting models (BM25, LM, and DLH13)
and two large-scale TREC Web test collections, namely GOV2 and the 50 million
English document subset of the TREC ClueWeb09 (CW09B) [Clarke et al. 2010]. Their
statistics are given in Table I. In our experiments, we use the Terrier IR platform.3
Both GOV2 and CW09B corpora are indexed, applying Porter’s English stemmer and
removing standard stopwords. Positional information is not stored, and each post-
ing consists of only the Elias-Gamma encoded document id gap and the Elias-Unary
encoded frequency.

Both TAAT MAXSCORE and DAAT WAND can take advantage of the presence of ad-
ditional skip pointers [Moffat and Zobel 1996] in the inverted file. These permit an
advancement in the posting list to a given document, instead of only to the next post-
ing. In doing so, the postings for documents that will never be retrieved will not
be decompressed, thus increasing efficiency. Hence, we add a single level of skip-
ping pointers [Moffat and Zobel 1996] to the inverted index (skipping parameter
L = 10,000 for GOV2, L = 100,000 for CW09B, set empirically to maximize efficiency).

3http://terrier.org.
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Table II. Test Queries Distribution per Number of Terms

# of Query Terms
Queries Total 1 2 3 4 5 6 7
TREC Terabyte 2005 994 30 210 322 240 134 41 17
MSN 2006 965 209 360 244 98 39 15 —

During retrieval, the parameters for BM25 and LM (k1, k3, b, μ) remain at their default
settings—in contrast, DLH13 is parameter-free. Efficiency experiments are made us-
ing a quad-core Intel Xeon 2.6GHz, with 8GB RAM, and a 250GB SATA disk holding
the index.

For both GOV2 and CW09B corpora, we experiment both with and without static
scores within the retrieval process. In particular, we use PageRank scores for each
document, normalized to maximum 1, and weighted by parameter ω = 2 (found by
empirically maximizing mean average precision on 50 queries with relevance assess-
ments of the TREC 2009 Web track). For the integration of the static document scores
into the dynamic pruning strategies, TAAT MAXSCORE and DAAT WAND both require
the use of an upper bound on the maximum value of the static score (i.e. ω = 2). As
alluded to in research question (4) above, this increases uncertainty about whether or
not a document or term posting list can be pruned and hence impact the number of
postings scored.

The queries used during retrieval depends on the test collection. For GOV2, we used
the first 1000 queries from the TREC Terabyte track efficiency task [Buttcher et al.
2007]. We removed empty queries, queries with no results returned, and the six queries
with more than seven terms (which we considered not to be significant) to obtain a final
set of 994 queries. For CW09B, we extract a stream of user queries from a real search
engine log. In particular, we select the first 1000 queries of the MSN 2006 query log
[Craswell et al. 2009]. We removed empty queries, queries with no results returned,
and the fifteen queries with more than six terms (which we again considered not to
be significant), to obtain a final set of 965 queries. In all of the following experiments,
results will be broken down by the number of query terms. The distributions of queries
per number of terms are summarized in Table II.

5.2. Approximation Accuracy

The numerical accuracy of the upper-bound approximation will have an impact on
the safeness and the efficiency of dynamic pruning strategies. If an approximation is
lower than the least upper bound, then some postings may incorrectly be omitted from
scoring, potentially making the ranking only approximate instead of safe-up-to-rank-K.
If an approximation is greater than the least upper bound, the ranking is safe-up-to-
rank-K, but if the value is far greater than the least upper bound value, then some
postings will be needlessly scored.

We measured the least and approximated upper bounds for every term in both query
logs, and for each approximation we report in Table III how many upper-bound ap-
proximations were not lower than the least upper bound and, for safe upper-bound
approximations, the average relative increase introduced by the approximation. As
the DLH13 and LM models cannot be factored into document variant and document
invariant factors, we omit results for the Factor approximation.

From the results, we note that the approximation Factor performs well for BM25,
with no unsafe upper bounds. This is expected, as it was explicitly designed to be used
in conjunction with BM25.

Next, approximation AVGDL is unsafe in several cases, but the average relative
increase of the approximation value is not very marked, with a notable exception for
DLH13. However, this approximation can be unsafe for terms which have maximal term
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Table III. Accuracy of the Term Upper-Bound Approximations, in Terms of Safeness and Average
Relative Increases

BM25 LM DLH13
# Safe # Unsafe Avg. Rel. # Safe # Unsafe Avg. Rel. # Safe # Unsafe Avg. Rel.

Approx. Terms Terms Increase Terms Terms Increase Terms Terms Increase
GOV2

Factor 1926 0 128.5% — — — — — —
AVGDL 1885 41 2.2% 1901 25 23.3% 1869 57 *
MAXTF 1926 0 3.1% 1926 0 20.6% 1926 0 20.8%

CW09B
Factor 1231 0 151.4% — — — — — —
AVGDL 1142 89 5.3% 1163 68 12.2% 1131 100 *
MAXTF 1231 0 10.2% 1231 0 8.8% 1231 0 15.6%

*Denotes that the value diverges to positive infinity due to the formulation of DLH13, while
Factor is unsuitable for models other than BM25.

frequency less than avg l. For instance, ‘apotheosis’ is a valid query term, but occurs
at most 114 times in a CW09B document. The least upper bound value for BM25 is
12.49, but as avg l = 698, AVGDL unsafely approximates 12.44. This emphasises the
fact that AVGDL is not suitable for ensuring safe-to-rank-K retrieval.

Overall, approximation MAXTF is the only safe approximation, as expected. In gen-
eral, term upper-bounds (approximated or least) are calculated independently for each
term, as the dynamic pruning strategy cannot know the maximum score of any docu-
ment where the two terms co-occur. Thus, the upper bound will always be higher than
necessary and on the safe side. For our proposed term upper-bound approximation,
the average upper-bound approximation is always no higher than 21% above the least
upper bound. However, it is not clear how this difference will impact the number of
postings scored or the resulting efficiency. These two points are investigated in detail
in the following two sections.

5.3. Approximation Impact on Posting Pruning

The accuracy of the upper-bound approximations will have an impact on the effective-
ness and efficiency of the dynamic pruning strategies by affecting which postings are
scored. We measure this, to address the second research question outlined above. In
particular, we first precompute the least upper bound for each term. Then, for each
dynamic pruning strategy, we measure the number of postings that were scored for
each query term in any full strategy (i.e., TAAT FULL and DAAT FULL). Then we mea-
sure the percentage of postings that were scored for each query term using the least
upper bounds with respect to the full strategies as a ground truth. Next, we test the
MAXTF approximation and measure the percentage of postings scored. Compared to
the least upper bounds, the percentage of total postings scored by the approximation
should ideally be as close to those scored when using the least upper bound, such that
time is not wasted scoring useless postings that should have been pruned.

Tables IV and V detail the percentage of postings scored using the LEAST and MAXTF
upper bounds for each collection and dynamic pruning strategy, for K = 1000 and
K = 20, respectively. Similarly, Figures 4 and 5 report the percentage of total postings
extraneously scored by the MAXTF approximation compared to the least upper bound
for each dynamic pruning strategy, again for K = 1000 and K = 20, respectively.
Finally, to aid analysis, Table VI summarizes the mean percentage of postings scored
by the least upper bound, and the increase when using the MAXTF approximation,
across each experimental dimension (K, corpus, weighting model, dynamic pruning
strategy, and query length) in Tables IV and V, while varying the other dimensions.

From the results, we make several observations. The number of postings scored by
BM25 are low for GOV2 and CW09B using TAAT MAXSCORE (less than 38%). In this
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Table IV. Percentage of Postings Scored by the LEAST and MAXTF Upper-Bound Approximations, Broken
Down by Query Length (K = 1000)

# of Query Terms
Model Strategy Approx. 2 3 4 5 6 7

GOV2

BM25

TAAT LEAST 32.40% 29.42% 28.91% 29.74% 33.72% 30.65%
MAXSCORE MAXTF 32.72% 29.42% 28.91% 29.81% 34.10% 30.65%

DAAT LEAST 27.22% 11.95% 6.68% 5.08% 4.67% 3.33%
MAXSCORE MAXTF 27.29% 12.04% 6.73% 5.13% 4.72% 3.37%

DAAT LEAST 23.07% 9.22% 6.87% 6.47% 6.30% 4.78%
WAND MAXTF 23.19% 9.35% 6.98% 6.71% 6.42% 4.95%

LM

TAAT LEAST 65.44% 49.75% 57.76% 63.61% 64.33% 64.94%
MAXSCORE MAXTF 95.44% 71.51% 62.15% 67.47% 71.96% 75.28%

DAAT LEAST 57.89% 33.25% 27.45% 26.29% 25.94% 29.48%
MAXSCORE MAXTF 87.11% 62.28% 43.44% 35.51% 34.39% 39.86%

DAAT LEAST 58.62% 38.34% 39.91% 41.03% 41.59% 49.66%
WAND MAXTF 87.17% 64.94% 52.17% 49.78% 51.05% 62.10%

DLH13

TAAT LEAST 60.48% 46.21% 56.04% 59.25% 59.59% 63.13%
MAXSCORE MAXTF 75.49% 52.81% 58.24% 65.98% 65.23% 64.64%

DAAT LEAST 41.04% 25.49% 21.29% 19.03% 20.39% 19.48%
MAXSCORE MAXTF 59.79% 34.57% 27.82% 26.41% 25.91% 27.81%

DAAT LEAST 36.83% 30.64% 31.37% 29.21% 33.20% 34.35%
WAND MAXTF 58.95% 38.62% 39.04% 40.25% 40.78% 45.23%

CW09B

BM25

TAAT LEAST 32.99% 37.27% 19.80% 25.91% 25.15% —
MAXSCORE MAXTF 32.99% 37.35% 19.80% 25.91% 25.15% —

DAAT LEAST 13.95% 17.91% 5.86% 7.36% 4.42% —
MAXSCORE MAXTF 13.96% 17.92% 5.87% 7.37% 4.43% —

DAAT LEAST 15.02% 29.00% 8.00% 17.94% 12.41% —
WAND MAXTF 15.04% 29.02% 8.04% 17.96% 12.43% —

LM

TAAT LEAST 50.32% 69.33% 61.25% 80.67% 82.23% —
MAXSCORE MAXTF 60.69% 77.42% 63.97% 82.02% 86.43% —

DAAT LEAST 49.78% 43.15% 35.22% 49.13% 46.79% —
MAXSCORE MAXTF 58.86% 50.94% 43.46% 54.93% 51.32% —

DAAT LEAST 52.13% 61.02% 50.05% 71.99% 74.04% —
WAND MAXTF 60.80% 67.56% 56.95% 74.78% 76.76% —

DLH13

TAAT LEAST 44.97% 67.09% 60.86% 78.38% 81.18% —
MAXSCORE MAXTF 49.66% 68.68% 61.86% 82.02% 81.18% —

DAAT LEAST 38.10% 29.71% 26.00% 37.17% 33.19% —
MAXSCORE MAXTF 43.38% 35.40% 29.37% 44.27% 40.52% —

DAAT LEAST 39.03% 46.97% 41.04% 60.51% 59.04% —
WAND MAXTF 45.12% 53.84% 44.70% 67.69% 66.77% —

case, there is no marked difference between the least and approximate upper bounds,
due to the pruning decision made by TAAT MAXSCORE. In particular, when it decides
to prune a whole posting list comparing the current threshold with the term upper
bound, a small difference on that value is unlikely to change the pruning decision. For
the DAAT dynamic pruning strategies, the number of postings scored are also sensibly
reduced with both upper bounds for BM25. For GOV2, the number of postings scored
decreases for larger queries; however, the same effect is not present with real Web
queries used with CW09B. Nevertheless, the MAXTF approximation gives very good
results with respect to the least upper bounds for BM25. The percentage of scored
postings exceeds the value in the least upper bound case by less than 0.6% for GOV2
(K = 20) and than 0.15% for CW09B (K = 20). If we limit to DAAT strategies, these
bounds lower to 0.24% and 0.04%, respectively. The value of K does not have any
noticable impact in this case. Overall, with mean increases in postings scored of 0.08%
above the least upper bound (see Table VI), it is clear that the Factor approximation is
entirely suitable for BM25.
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Table V. Percentage of Postings Scored by the LEAST and MAXTF Upper-Bound Approximations, Broken Down
by Query Length (K = 20)

# of Query Terms
Model Strategy Approx. 2 3 4 5 6 7

GOV2

BM25

TAAT LEAST 27.93% 25.84% 22.73% 25.10% 29.25% 24.95%
MAXSCORE MAXTF 28.42% 26.44% 23.32% 25.10% 29.45% 24.95%

DAAT LEAST 20.09% 8.85% 4.48% 3.08% 2.73% 1.91%
MAXSCORE MAXTF 20.12% 8.86% 4.51% 3.09% 2.80% 1.93%

DAAT LEAST 15.64% 4.02% 2.07% 1.56% 1.95% 1.48%
WAND MAXTF 15.66% 4.07% 2.11% 1.61% 2.30% 1.53%

LM

TAAT LEAST 37.16% 43.57% 50.01% 44.84% 47.91% 50.57%
MAXSCORE MAXTF 61.55% 45.55% 55.98% 58.27% 58.89% 58.54%

DAAT LEAST 21.63% 16.97% 12.95% 11.11% 10.82% 10.71%
MAXSCORE MAXTF 39.11% 21.83% 20.46% 19.66% 18.84% 19.04%

DAAT LEAST 18.07% 22.99% 20.84% 19.71% 20.36% 23.76%
WAND MAXTF 38.70% 28.80% 33.08% 33.19% 32.99% 36.72%

DLH13

TAAT LEAST 34.63% 43.71% 45.54% 42.56% 49.54% 52.71%
MAXSCORE MAXTF 54.93% 43.94% 53.40% 49.86% 54.58% 57.24%

DAAT LEAST 21.01% 14.41% 9.60% 8.30% 8.97% 8.88%
MAXSCORE MAXTF 24.87% 18.70% 14.69% 11.84% 12.78% 13.63%

DAAT LEAST 16.15% 17.27% 13.73% 14.33% 16.37% 18.48%
WAND MAXTF 19.47% 25.42% 23.19% 20.19% 23.83% 28.26%

CW09B

BM25

TAAT LEAST 23.13% 22.62% 12.92% 16.31% 7.65% —
MAXSCORE MAXTF 23.14% 22.77% 12.92% 16.31% 7.65% —

DAAT LEAST 12.13% 11.03% 3.24% 3.11% 1.81% —
MAXSCORE MAXTF 12.13% 11.05% 3.26% 3.11% 1.81% —

DAAT LEAST 12.99% 16.07% 1.91% 6.90% 3.44% —
WAND MAXTF 12.99% 16.11% 1.94% 6.91% 3.44% —

LM

TAAT LEAST 28.65% 38.47% 42.76% 69.34% 59.53% —
MAXSCORE MAXTF 33.54% 49.07% 46.36% 74.63% 61.02% —

DAAT LEAST 22.32% 17.79% 14.72% 22.53% 19.20% —
MAXSCORE MAXTF 26.29% 22.45% 18.68% 29.49% 23.18% —

DAAT LEAST 23.80% 28.47% 24.88% 47.06% 40.33% —
WAND MAXTF 28.45% 35.33% 31.02% 55.97% 46.32% —

DLH13

TAAT LEAST 25.03% 44.53% 38.63% 64.53% 58.19% —
MAXSCORE MAXTF 32.97% 54.09% 47.54% 70.90% 59.23% —

DAAT LEAST 20.15% 14.44% 9.99% 18.43% 15.08% —
MAXSCORE MAXTF 21.36% 17.43% 13.58% 22.50% 19.14% —

DAAT LEAST 20.28% 23.57% 15.99% 38.89% 32.61% —
WAND MAXTF 21.76% 28.83% 22.31% 44.51% 39.96% —

For LM and DLH13, we observe similar results, however the pruning is more difficult
than for BM25. There is not a strict correlation of pruning accuracy with query length,
with the only exception being GOV2 and the DAAT MAXSCORE strategy. However, if we
compare the number of posting scored between the LEAST and MAXTF upper bounds,
we make the following observations. For the GOV2 collection, the overhead of the
MAXTF approximation is marked for queries with two to three terms (around 30% for
LM and 22% for DLH13) but it decreases to 10% with longer queries in both cases.
For the CW09B collection and the MSN query log, the query-length correlation is not
present, but in any case the overhead introduced by the MAXTF approximation is
usually lower than 10%. This result reflects the accuracy of the MAXTF approximation
reported in Table III. In these cases too, the value of K does not have any noticable
impact on our conclusions.

Comparing accuracy across the three dynamic pruning strategies, we note from
Table VI that TAAT MAXSCORE scores more postings than the DAAT strategies. This is
expected, as the DAAT strategies make more frequent pruning decisions than TAAT
MAXSCORE, which only makes a decision after completely scoring each term. Overall,
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Fig. 4. Difference between the percentage of total postings scored using the MAXTF approximation and the
least upper bounds, broken down by query length (K = 1000).

Fig. 5. Difference between the percentage of total postings scored using the MAXTF approximation and the
least upper bounds, broken down by query length (K = 20).

DAAT MAXSCORE scores the least number of postings. This is due to the fact that it is
focused on avoiding scoring computations, while DAAT WAND is focused on skipping
read operations from disk.

While measuring the approximation impact on posting pruning, it is also possible to
measure the postings associated to documents that force their way into the current top
K results at that point in the processing. However, the experimental values reported
by this measure are very small (i.e., 0.01–0.04% of total postings), and are exactly
correlated with counting the actual number of postings scored by each dynamic pruning
technique for different approximations.

Overall, our proposed MAXTF upper-bound approximation is promising, as it only
scores 4%–8% more postings than the least upper bound (see query length in Table VI).
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Table VI. Summary Table for Tables IV and V, Reporting Mean Percentage of Postings Scored When Using
Least Upper Bound, and Increase When Using MAXTF Approximation, Across Each Experimental Dimension

(Pruning Strategy, Weighting Models, K, Corpus, and Query Length)

Mean Number of Mean increase in
postings scored postings scored

Dimension Variable for LEAST (%) for MAXTF (� %)

Dynamic pruning strategy
TAAT MAXSCORE 44.90 4.94
DAAT MAXSCORE 18.88 5.18
DAAT WAND 26.44 6.15

Weighting model
BM25 14.43 0.08
LM 40.85 9.81
DLH13 34.95 6.40

K 20 22.61 4.77
1000 37.54 6.08

Corpus GOV2 27.46 6.99
CW09B 33.21 3.54

Query length

2 terms 31.66 8.41
3 terms 30.28 5.67
4 terms 25.87 4.34
5 terms 32.40 4.57
6 terms 31.50 4.00

However, the impact of increased postings is also likely to impact the query response
time. In the next section, we validate the impact by directly timing the efficiency of the
IR system using least and approximate upper bounds.

5.4. Approximation Impact on Efficiency

To further assess the efficiency of the proposed approximation and to address our
third research question, we performed additional experiments to evaluate the impact
of the adoption of our approximation with respect to the least upper bounds on the
average query response time. We collected the query response times for the least and
MAXTF approximated upper bounds using the second 500 queries from each query set—
indeed, we discarded the first 500 queries to take into account any transient effects
due to L2 and file caches warmup.4 For BM25 performance loss was mostly negligible,
given the small number of additional postings scored by the MAXTF approximation.
Tables VII and VIII report the mean relative efficiency degradation of the MAXTF
approximation with respect to the least upper bound for LM and DLH13 with K =
1000 and K = 20, respectively. Finally, to aid in the analysis of Tables VII and VIII,
summary Table IX reports the mean response times, and the relative degradation for
each experimental dimension (K, corpus, weighting model, dynamic pruning strategy,
and query length), while varying the other dimensions.

First, we observe that GOV2 experiments show a higher efficiency overhead than
CW09B experiments—for instance, in Table IX, we note that while the mean response
time for GOV2 is lower than CW09B, using the MAXTF approximation is 10.3% slower
than using the least upper bound. This is expected, as for the LM and DLH13 weighting
models, the number of extra postings scored for GOV2 was generally than higher
for CW09B in Tables IV and V above. In summary, the number of posting scores
accurately reflects the response time—indeed, we found the number of postings scored
and query response time over the second 500 queries to have a near-perfect correlation:
Spearman’s ρ = 0.98.

4However, we found a Kendall’s concordance [Kendall 1955] of W = 0.98 between number of postings and
response times across five different orderings of the query sets, suggesting that cache warmup has little
impact on response times.
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Table VII. Percentage Overhead of Average Query Response Time (last 500 queries) for Various Weighting
Models and Dynamic Pruning Strategies (K = 1000)

# of Query Terms
Model Strategy 2 3 4 5 6 7

GOV2

LM
TAAT MAXSCORE 20.5% 8.9% <0.5% 5.2% 5.4% 11.9%
DAAT MAXSCORE 14.2% 19.8% 8.8% <0.5% 0.5% 3.6%

DAAT WAND 41.9% 46.9% 18.8% 17.5% 12% 10.7%

DLH13
TAAT MAXSCORE 12.1% 1.8% 2.2% 9.4% 9.0% 6.3%
DAAT MAXSCORE 13.3% 7.4% 4.6% 6.0% 7.7% 6.3%

DAAT WAND 38.4% 14.7% 13.9% 22.2% 13.8% 15.0%
CW09B

LM
TAAT MAXSCORE 10.7% <0.5% 1.0% 3.8% <0.5% —
DAAT MAXSCORE 6.3% 6.0% 6.1% 3.8% 3.9% —

DAAT WAND 8.1% 4.1% 7.7% <0.5% 2.1% —

DLH13
TAAT MAXSCORE 8.0% 0.5% <0.5% 8.1% <0.5% —
DAAT MAXSCORE <0.5% 1.1% <0.5% 3.1% <0.5% —

DAAT WAND 9.6% 6.6% 3.0% 7.8% 4.1% —

Table VIII. Percentage Overhead of Average Query Response Time (last 500 queries) for Various Weighting
Models and Dynamic Pruning Strategies (K = 20)

# of Query Terms
Model Strategy 2 3 4 5 6 7

GOV2

LM
TAAT MAXSCORE 40.4% 7.6% 10.3% 33.9% 31.1% 14.7%
DAAT MAXSCORE 13.4% 7.9% 14.0% 15.2% 14.8% 16.1%

DAAT WAND 40.6% 9.3% 32.0% 28.8% 29.5% 15.6%

DLH13
TAAT MAXSCORE 62.9% 16.1% 19.3% 22.7% 11.5% 9.5%
DAAT MAXSCORE 7.9% 7.8% 10.7% 8.5% 10.8% 9.4%

DAAT WAND 12.7% 37.1% 42.1% 29.1% 31.1% 32.2%
CW09B

LM
TAAT MAXSCORE 6.3% 21.5% 11.8% 13.5% 0.5% −
DAAT MAXSCORE <0.5% <0.5% <0.5% 0.6% <0.5% —

DAAT WAND 16.9% 23.4% 28.8% 21.7% 17.9% —

DLH13
TAAT MAXSCORE 4.1% 2.1% 22.3% 9.9% 4.3% —
DAAT MAXSCORE <0.5% 4.2% 6.1% 5.8% 9.8% —

DAAT WAND 3.6% 14.6% 29.5% 10.7% 33.7% —

Second, from Tables VII and VIII, we observe that the performance overhead in
terms of postings scored is reflected in terms of response time overhead. In particular,
the overhead for two terms queries is marked in the GOV2 experiments (reaching
41.9% for DAAT and 62.9% for TAAT strategies). For CW09B, the overhead of two
terms queries is reduced (16.9% for DAAT and 10.7% for TAAT strategies). From the
point of view of the different dynamic pruning strategies, it is clear from Table IX
that DAAT MAXSCORE is the least degraded strategy when using the approximation.
Indeed, TAAT MAXSCORE suffers from the fact that even a slightly higher upper bound
can force the full scoring of all postings for an additional query term, while DAAT
WAND focuses on disk-access optimization and requires more complex data structures
than DAAT MAXSCORE at runtime, and hence is not as efficient overall, particularly for
longer queries.

Analyzing the results when varying the number of the top K results, it is natural
that we observed a reduced overhead for K = 1000 with respect to K = 20. For the
weighting models, besides having very good results for BM25 due to the closeness of
our approximation to the least upper bound, for the remaining models, namely LM and
DLH13, we obtain a similar performance overhead of ∼ 10%.

For the query lengths, we observe from Table IX that mean response time using
the least upper bounds increases the number of terms in the queries. Using the
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Table IX. Summary Table for Tables VII and VIII; Mean Response Time Using Least Upper Bounds and Mean
Relative Degradation in Response Time for Each Dimension, When Comparing MAXTF Approximation with

Least Upper Bound

Mean response Mean response Mean relative
time (s) time (s) degradation

Dimension Variable for LEAST (%) for MAXTF for MAXTF (� %)

Dynamic pruning strategy
TAAT MAXSCORE 3.64 3.86 6.2%
DAAT MAXSCORE 1.38 1.43 4.2%
DAAT WAND 1.54 1.73 12.6%

Weighting model
BM25 1.54 1.54 <0.5%
LM 2.75 3.07 11.6%
DLH13 2.71 3.00 10.7%

K 20 2.02 2.21 9.9%
1000 2.64 2.78 5.5%

Corpus GOV2 1.41 1.55 10.3%
CW09B 3.25 3.39 4.5%

Query length

2 terms 3.88 4.19 8.1%
3 terms 6.92 7.16 3.5%
4 terms 9.16 9.39 2.5%
5 terms 21.59 22.60 4.7%
6 terms 24.26 24.79 2.2%

approximation results in a slight overhead in query response time (2–8%), which mostly
decreases for longer queries. This is not surprising, given that more terms mean more
regular pruning decisions, which provide more opportunities to prune postings. This
result is mirrored by the lower increase in extra postings scored for longer queries (see
Figures 4 and 5).

However, on inspection of Tables VII and VIII, we note a wide variance of increases
in relative response time for different query lengths. In particular, the query terms
chosen by the users will affect the response times. Some queries are easier to prune
for a given dynamic pruning strategy, either because one particular chosen term is
highly informative (e.g. short posting list), or because the high value documents are
nearer the start of the posting lists, or because most of the postings for that term
score significantly lower than the term upper bound. Hence, difficult queries are most
likely to be negatively impacted by the latter reason when using approximations, as
the approximate upper bound will not discriminate as well between the documents
that should or should not make the top K.

Overall, we conclude that the degradation in efficiency when using the MAXTF ap-
proximation is not marked and is generally less than 10%.

5.5. Static Scores

In this section, we aim to investigate the impact of adding static scores into the retrieval
process. As discussed in Section 5.1, we make use of the bounding of static scores on the
retrieval process. In particular, in our experiments, the upper bound of the PageRank
score for any document is ω = 2.

Tables X and XI report the impact on the number of postings scored for K = 1000
and K = 20 when the PageRank static score is added to the retrieval process. Moreover,
these tables are summarized in Table XII. First, as the effectiveness of the IR system
has been altered by the addition of PageRank into the retrieval process, we note that
the percentage of postings scored by the LEAST upper bound is different from Table IV
and V.

By analyzing all three tables, we note that the results are, in general, similar to our
earlier experiments that do not use PageRank. In particular, the number of postings
scored for the least upper bound are typically slightly higher (on average, 14.43% for
BM25 without PageRank, 19.49% with—see Tables VI and XII). If we examine each
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Table X. Percentage of Postings Scored by LEAST and MAXTF Upper-Bound Approximations with PageRank
Static Score, Broken Down by Query Length (K = 1000)

# of Query Terms
Model Strategy Approx. 2 3 4 5 6 7

GOV2

BM25

TAAT LEAST 51.85% 40.31% 38.25% 36.25% 40.53% 35.25%
MAXSCORE MAXTF 52.01% 40.42% 38.28% 36.29% 40.53% 37.39%

DAAT LEAST 27.03% 11.92% 6.71% 5.11% 4.71% 3.36%
MAXSCORE MAXTF 27.12% 12.02% 6.77% 5.17% 4.75% 3.4%

DAAT LEAST 36.81% 18.38% 13.27% 11.75% 11.07% 8.49%
WAND MAXTF 37.17% 18.67% 13.48% 11.97% 11.38% 8.62%

LM

TAAT LEAST 95.1% 69.74% 62.33% 66.89% 67.77% 73.58%
MAXSCORE MAXTF 100% 92.98% 74.91% 72.12% 72.58% 76.29%

DAAT LEAST 57.91% 33.27% 27.47% 26.32% 25.96% 29.51%
MAXSCORE MAXTF 87.06% 62.29% 43.46% 35.54% 34.42% 39.88%

DAAT LEAST 88.47% 65.67% 52.01% 48.65% 49.68% 58.57%
WAND MAXTF 99.35% 89.76% 72.56% 63.25% 58.98% 66.75%

DLH13

TAAT LEAST 88.11% 56.3% 58.33% 65.13% 66.58% 66.51%
MAXSCORE MAXTF 100% 72.68% 61.62% 67.49% 71.83% 73.15%

DAAT LEAST 41.06% 25.52% 21.32% 19.06% 20.42% 19.5%
MAXSCORE MAXTF 59.79% 34.59% 27.85% 26.44% 25.94% 27.84%

DAAT LEAST 66.5% 40.5% 37.87% 37.52% 39.74% 40.35%
WAND MAXTF 86.27% 55.36% 45.9% 46.07% 47.84% 52.88%

CW09B

BM25

TAAT LEAST 42.05% 49.88% 30.35% 40.81% 34.46% —
MAXSCORE MAXTF 42.05% 49.88% 30.35% 40.81% 34.46% —

DAAT LEAST 13.96% 17.91% 5.86% 6.34% 4.42% —
MAXSCORE MAXTF 13.97% 17.92% 5.87% 6.35% 4.43% —

DAAT LEAST 38.7% 42.2% 15.36% 34.26% 29.46% —
WAND MAXTF 38.74% 42.23% 15.42% 34.3% 29.61% —

LM

TAAT LEAST 74.01% 82.16% 66.6% 82.02% 86.77% —
MAXSCORE MAXTF 77.61% 84.56% 72.04% 84.01% 87.14% —

DAAT LEAST 49.78% 43.15% 35.22% 49.13% 46.79% —
MAXSCORE MAXTF 58.86% 50.94% 43.46% 54.93% 51.32% —

DAAT LEAST 71.99% 73.88% 63.5% 78.03% 77.86% —
WAND MAXTF 79.38% 81.36% 73.21% 82.91% 80.11% —

DLH13

TAAT LEAST 59.95% 71.76% 62% 82.02% 85.67% —
MAXSCORE MAXTF 67.79% 76.31% 62.91% 82.02% 86.04% —

DAAT LEAST 38.1% 29.71% 26% 37.17% 33.19% —
MAXSCORE MAXTF 43.38% 35.4% 29.37% 44.27% 40.52% —

DAAT LEAST 52.64% 57.37% 46.71% 69.22% 68.91% —
WAND MAXTF 59.63% 63.25% 51.69% 72.03% 72.75% —

of the dynamic pruning techniques in turn, we can see that DAAT MAXSCORE is less
affected (18.88% without PageRank, 18.80% with), as it does not have to consider the
upper bound of the static score during pruning. In contrast, TAAT MAXSCORE and DAAT
WAND both score significantly more postings (44.90% to 53.12%, and 26.44% to 35.28%,
respectively). This means that the use of the upper bound on the static score introduces
an additional ‘slackness’ into pruning decisions, such that extra postings are sometimes
scored unnecessarily.

However, when we consider the difference between the least upper bound and the
MAXTF approximation, we note that the increases are not markedly between those
without PageRank and those with (again, comparing Tables VI and XII). For instance,
using the approximate upper bound on GOV2 results in 6.99% extra postings being
scored without PageRank and 7.03% with. In some cases, the average number of extra
postings scored using the approximation can be slightly less when using PageRank—
this is probably due to the change in retrieval effectiveness rather than the tightness
of the upper bounds.
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Table XI. Percentage of Postings Scored by LEAST and MAXTF Upper-Bound Approximations with PageRank
Static Score, Broken Down by Query Length (K = 20)

# of Query Terms
Model Strategy Approx. 2 3 4 5 6 7

GOV2

BM25

TAAT LEAST 35.87% 34.68% 27.48% 28.58% 30.59% 26.87%
MAXSCORE MAXTF 35.91% 34.68% 27.89% 28.67% 31.32% 27.22%

DAAT LEAST 19.19% 8.82% 4.49% 3.11% 2.76% 1.95%
MAXSCORE MAXTF 19.28% 8.83% 4.51% 3.13% 2.83% 1.96%

DAAT LEAST 18.83% 7.09% 4.49% 3.69% 3.86% 2.74%
WAND MAXTF 19.01% 7.27% 4.74% 3.81% 3.96% 2.84%

LM

TAAT LEAST 60.45% 45.79% 52.76% 52.57% 55.44% 55.64%
MAXSCORE MAXTF 86.7% 57.92% 57.9% 64.63% 63.53% 61.69%

DAAT LEAST 21.66% 17.01% 12.98% 11.14% 10.85% 10.74%
MAXSCORE MAXTF 39.12% 21.88% 20.49% 19.69% 18.87% 19.07%

DAAT LEAST 40.24% 28.56% 28.64% 25.74% 27.47% 27.3%
WAND MAXTF 72.55% 41.6% 38.69% 39.92% 37.78% 46.56%

DLH13

TAAT LEAST 57.23% 44.06% 51.75% 47.39% 52.78% 54.21%
MAXSCORE MAXTF 71.06% 45.49% 56.66% 57.26% 55.91% 57.85%

DAAT LEAST 21.04% 14.44% 9.64% 8.34% 9% 8.92%
MAXSCORE MAXTF 24.9% 18.73% 14.72% 11.87% 12.81% 13.66%

DAAT LEAST 19.78% 24.09% 18.76% 17.43% 19.9% 24.55%
WAND MAXTF 35% 28% 29.23% 25.28% 27.35% 30.42%

CW09B

BM25

TAAT LEAST 31.71% 31.62% 17.98% 21.72% 8.03% —
MAXSCORE MAXTF 31.71% 31.62% 18.1% 21.72% 8.03% —

DAAT LEAST 12.13% 8.2% 3.24% 2.25% 1.57% —
MAXSCORE MAXTF 12.13% 9.9% 3.26% 2.25% 1.57% —

DAAT LEAST 24.93% 23.38% 4.13% 15.05% 8.16% —
WAND MAXTF 24.94% 23.41% 4.16% 15.07% 8.18% —

LM

TAAT LEAST 42.72% 52.78% 45.69% 74.02% 60.4% —
MAXSCORE MAXTF 52.6% 62.08% 52.55% 78.44% 64.77% —

DAAT LEAST 22.33% 17.79% 14.72% 22.53% 19.2% —
MAXSCORE MAXTF 26.29% 22.45% 18.68% 29.49% 23.18% —

DAAT LEAST 33.4% 37.5% 31.54% 56.05% 45.28% —
WAND MAXTF 40.44% 43.41% 36.83% 63.01% 57.51% —

DLH13

TAAT LEAST 38.07% 59.16% 48.38% 70.97% 59.23% —
MAXSCORE MAXTF 46.95% 62.49% 53.59% 77.73% 62.56% —

DAAT LEAST 20.18% 14.44% 9.99% 18.43% 15.08% —
MAXSCORE MAXTF 21.36% 17.43% 13.58% 22.5% 19.14% —

DAAT LEAST 23.23% 29.98% 22.83% 44.23% 40.43% —
WAND MAXTF 26.54% 37.05% 32.23% 51.88% 49.68% —

Overall, we conclude that a static score can be successfully integrated into a dynamic
pruning retrieval process, regardless of whether the precalculated least upper bound
or an approximate upper bound on the terms scores is used.

6. PROXIMITY MODELS

Modern retrieval approaches apply not just single-term weighting models when rank-
ing documents. In common use are proximity weighting models, which highly score the
co-occurrence of pairs of query terms in close proximity to each other in documents. In
this manner, the basic ranking model of an IR system (Equation (1)) is expanded as

scoreQ(d, Q) = ω S(d) + κ
∑
t∈Q

score(t fd, ∗d, ∗t) + φ prox(d, Q),

for some proximity document scoring function prox(d, Q), and weight φ.
The main approaches to integrate proximity weighting models into pruning strate-

gies require modifications to the index structure to include information on the proximity
scores upper bounds. In Schenkel et al. [2007] and Zhu et al. [2007, 2008], the authors
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Table XII. Summary Table for Tables X and XI, Containing Mean Percentage of Postings Scored When Using
Least Upper Bound, and Increase When Using the MAXTF Approximation, Across Each Experimental

Dimension (Pruning Strategy, Weighting Models, K, Corpus, and Query Length)

Mean number of Mean increase in
postings scored postings scored

Dimension Variable for Factor (%) for MAXTF (� %)

Dynamic pruning strategy
TAAT MAXSCORE 53.12 4.54
DAAT MAXSCORE 18.80 5.21
DAAT WAND 35.28 6.70

Weighting model
BM25 19.49 0.14
LM 47.59 9.75
DLH13 40.13 6.56

K 20 26.85 5.22
1000 44.62 5.74

Corpus GOV2 33.00 7.03
CW09B 39.02 3.62

Query length

2 terms 42.69 7.76
3 terms 36.92 6.27
4 terms 29.96 4.95
5 terms 36.63 4.53
6 terms 35.11 3.88

detail several approaches to leveraging early termination when proximity scores are
included in the ranking model. While these strategies alter the index structure (e.g.
by adding term-pair inverted indices), we aim to determine how accurately the prox-
imity scores can be upper-bounded without modifying the index structure (other than
keeping-position occurrence information in the standard inverted index posting list)
and exploiting the approximation obtained in Section 4. In particular, we use the se-
quential dependence model of Markov Random Fields (MRF) [Metzler and Croft 2005],
which has been shown be to effective at modeling the proximity of query-term occur-
rences in documents. In MRF, the proximity score is calculated as follows:

prox(d, Q) =
∑

p=(ti ,ti+1)∈Q

(score(pf (ti, ti+1, d, k1), ld, ∗p)

+ score(pf (ti, ti+1, d, k2), ld, ∗p)),

where pf (ti, ti+1, d, k) represents the number of occurrences of the tuple of sequential
query terms (ti, ti+1) occurring in document d in windows of size k (abbreviated as
pfd). Following Metzler and Croft [2005], we set φ = 0.1, and k1 = 2, and k2 = 8 to
account for the proximity of two terms as an exact phrase, and proximity at distance 8,
respectively. score(pfd, ld, ∗p) is implemented using Dirichlet language modeling, as per
Equation (8), where pair frequency pfd takes the role of term frequency t fd. However, in
contrast to term weighting, in proximity weighting, it is common to assume a constant
frequency for the pair in the collection [Macdonald and Ounis 2010].5 It then follows
that MRF can easily be calculated in a DAAT retrieval strategy without the need for
multiple passes over the postings lists.

As score(pfd, ld, ∗p) is a Dirichlet language model, the result of Theorem 2 holds—
in particular score(pfd, ld, ∗p) is strictly monotonic in pfd. The question, then, is how
to estimate an upper bound on pfd without special indexing support. Given that a
tuple (ti, ti+1) cannot occur in any document more frequently than the smallest term
frequency of the two terms in the document, an upper bound on pfd for all occurrences

5As implemented by the authors of MRF in the Ivory retrieval system; see http://www.umiacs.umd.edu/
∼jimmylin/ivory.
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Table XIII. Average Query Response Time (Last 500 Queries, in Seconds) for the Application of MRF (K = 20)

# of Query Terms
Strategy 2 3 4 5 6 7 Mean

GOV2
DAAT FULL 1.27 3.24 5.80 7.71 11.52 15.02 4.79
DAAT FULL + MRF 1.28 3.25 5.97 8.25 14.13 17.10 5.10
DAAT MAXSCORE 0.69 1.70 3.18 4.28 7.09 8.61 2.63
DAAT MAXSCORE + MRF 0.81 1.97 3.71 5.06 8.54 10.74 3.11

CW09B
DAAT FULL 4.59 7.18 9.49 20.43 24.96 — 6.35
DAAT FULL + MRF 4.85 7.76 10.58 24.14 30.43 — 7.07
DAAT MAXSCORE 3.21 5.02 6.43 15.16 16.94 — 4.57
DAAT MAXSCORE + MRF 4.01 6.20 7.73 19.95 22.25 — 5.76

of two terms can be calculated as

pfmax = min
(

max
d∈L(ti )

t fd, max
d∈L(tj )

t fd

)
.

This permits efficient proximity calculation on an index using positions without the
need for any additional index structures, unlike Schenkel et al. [2007] and Zhu et al.
[2007, 2008].

We adapted the DAAT MAXSCORE strategy to include proximity scores in the scoring
function.6 In this way, both proximity and term scores contribute at the same time to
determine the current threshold of the top-K documents and the upper bound for the
currently scored document. In the following, we experiment to determine if the MAXTF
approximate can be used to prune pair postings for the MRF approach, when combined
with LM and the DAAT MAXSCORE dynamic pruning strategy. The experimental setup
is unchanged from that described in Section 5; however, the postings in the inverted
index now contain occurrence position information, in the form of Elias-unary encoded
position gaps. Moreover, in contrast to Section 5, we assert that it is infeasible to
precalculate the least upper bounds for each pair of terms in the index. Hence, this
experiment cannot obtain relative degradation in efficiency with respect to the least
upper bounds, nor the number of extra pair postings being needlessly scored.

Table XIII shows the average query response time for DAAT FULL and DAAT MAXS-
CORE strategies, with and without the application of MRF, for K = 20. As in Section 5.4,
the response times are reported for the second 500 queries, as the first 500 queries are
omitted as cache warmup. From the results, we first note that the response times for
the DAAT MAXSCORE strategy without MRF are higher than those reported earlier in
Table IX. This is expected because the inverted index size is markedly increased by the
presence of occurrence-position information (8 GB to 34 GB for GOV2, 20 GB to 78 GB
for CW09B). Nevertheless, DAAT MAXSCORE is faster than the exhaustive DAAT FULL

strategy.
Next, adding MRF to a full DAAT strategy can noticeable decrease efficiency (e.g.,

4.79 to 5.10 s across all 500 queries with the GOV2 collection). Moreover, MRF has more
impact on efficiency as query length increases. This is expected, as the number of pairs
of query terms also increases. However, as expected, DAAT MAXSCORE is faster than
the exhaustive DAAT FULL strategy. Moreover, MRF can successfully be integrated into
DAAT MAXSCORE, such that not every posting is scored, and, hence, is more efficient
that DAAT FULL + MRF. This suggests that the MAXTF approximation is suitable for
use in proximity as well, without the need for special index structures such as term
pair posting lists [Schenkel et al. 2007; Zhu et al. 2007, 2008].

6See Tonellotto et al. [2010] for a study of dynamic pruning strategies for proximity models.
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7. CONCLUSIONS

In this work, we analyzed the problem of obtaining upper bounds for weighting model
scores by approximation, instead of precalculation. We then showed how upper bounds
based on maximal term frequency could be proven safe for various modern weighting
models, by formulating a constrained maximization problem. By relaxing the inte-
gral constraint of the problem, we were able to derive a novel yet provably effective
approximation for several weighting models from different families. The accuracy and
efficiency of all upper bounds were then empirically tested using several dynamic prun-
ing strategies using many queries on two large-scale TREC test collections. Moreover,
we investigated the effect of introducing the PageRank static score into the dynamic
pruning retrieval approach, and the applicability of the proposed approximation to the
Markov Random Field proximity model.

The experiments within this paper show that efficient retrieval systems can be
obtained for various weighting models without the need to precalculate term upper
bounds for each weighting model. For instance, using approximate upper bounds re-
sults in only 2%–8% degradations in mean query response time compared to using the
least upper bound.

In Section 2, we motivated the choice of disjunctive query processing in our ex-
periments through effectiveness evidence in the literature. Nevertheless, conjunctive
processing allows additional efficiency improvements. In the future, we will compare
and contrast the suitability of our upper-bound approximations for both conjunctive
and disjunctive query processing. Moreover, in Section 5.2, we noted that our upper-
bound approximations only overestimated the least upper bound by 3–20%. In future
work, we will reexamine the impact on both efficiency and effectiveness as the upper
bound is reduced. Furthermore, in Section 5.4, we noted that some queries are more
difficult than others of the same length for pruning—we will investigate if it is possible
to characterize such queries, or even predict them before retrieval starts. Finally, we
also intend to examine the use of upper-bound approximations when dynamic pruning
strategies are applied in document-partitioned distributed retrieval systems.
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