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Abstract

Automatically recognising medical con-
cepts mentioned in social media messages
(e.g. tweets) enables several applications
for enhancing health quality of people in
a community, e.g. real-time monitoring of
infectious diseases in population. How-
ever, the discrepancy between the type of
language used in social media and med-
ical ontologies poses a major challenge.
Existing studies deal with this challenge
by employing techniques, such as lexi-
cal term matching and statistical machine
translation. In this work, we handle the
medical concept normalisation at the se-
mantic level. We investigate the use of
neural networks to learn the transition be-
tween layman’s language used in social
media messages and formal medical lan-
guage used in the descriptions of medi-
cal concepts in a standard ontology. We
evaluate our approaches using three differ-
ent datasets, where social media texts are
extracted from Twitter messages and blog
posts. Our experimental results show that
our proposed approaches significantly and
consistently outperform existing effective
baselines, which achieved state-of-the-art
performance on several medical concept
normalisation tasks, by up to 44%.

1 Introduction

Existing studies (O’Connor et al., 2014; Lim-
sopatham and Collier, 2015a; Limsopatham and
Collier, 2015b) have shown that data from social
media (e.g. Twitter1 and Facebook2) can be lever-
aged to improve the understanding of patients’ ex-

1http://twitter.com
2http://facebook.com

perience in healthcare, such as the spread of infec-
tious diseases and side-effects of drugs. However,
the lexical and grammatical variability of the lan-
guage used in social media poses a key challenge
for extracting information (Baldwin et al., 2013;
O’Connor et al., 2014). In particular, the frequent
use of informal language, non-standard grammar
and abbreviation forms, as well as typos in social
media messages has to be taken into account by
effective information extraction systems.

The task of medical concept normalisation for
social media text, which aims to map a variable
length social media message to a medical con-
cept in some external coding system, is faced
with a similar challenge (Limsopatham and Col-
lier, 2015b). Traditional approaches, e.g. (Ris-
tad and Yianilos, 1998; Aronson, 2001; Lu et
al., 2011; McCallum et al., 2012), used prox-
imity matching or heuristic string matching rules
based on dictionary lookup when mapping texts
to medical concepts. For example, Ristad and
Yianilos (1998) incorporated edit-distance when
mapping similar texts. The MetaMap system of
Aronson (2001) applied a rule-based approach us-
ing pre-defined variants of terms when mapping
texts to medical concepts in the UMLS Metathe-
saurus3. However, as shown in Table 1, exist-
ing string matching techniques may not be able to
map the social media message “moon face and 30
lbs in 6 weeks” to the medical concept ‘Weight
Gain’, or map “head spinning a little” to ‘Dizzi-
ness’, as no words in the social media messages
and the description of the medical concepts corre-
spond. Recent studies, e.g. (Leaman et al., 2013;
Leaman and Lu, 2014; Limsopatham and Collier,
2015a), applied machine learning techniques to
take into account relationships between different
words (e.g. synonyms) when performing normal-

3https://www.nlm.nih.gov/pubs/
factsheets/umlsmeta.html



Social media message Description of corresponding medical concept
lose my appetite Loss of appetite
i don’t hunger or thirst Loss of Appetite
hungry Hunger
moon face and 30 lbs in 6 weeks Weight Gain
gained 7 lbs Weight Gain
lose the 10 lbs Body Weight Decreased
feeling dizzy ... Dizziness
head spinning a little Dizziness
terrible headache!! Headache

Table 1: Examples of social media messages and their related medical concepts.

isation. For instance, the DNorm system of Lea-
man et al. (2013), which achieved state-of-the-art
performance on several medical concept normal-
isation tasks for medical articles (Doğan et al.,
2014) and patient records (Suominen et al., 2013),
used a pairwise learning-to-rank technique to learn
the similarity between different terms when per-
forming concept normalisation. Limsopatham and
Collier (2015a) leveraged translations between the
informal language used in social media and the
formal language used in the description of medical
concepts in an ontology. However, we argue that
effective concept normalisation requires a system
to take into account the semantics of social me-
dia messages and medical concepts. For example,
to be able to map from the social media message
“i don’t hunger or thirst” to the medical concept
‘Loss of Appetite’, a normalisation system has to
take into account the semantics of the whole mes-
sage; otherwise, “i don’t hunger or thirst” may be
mapped to the medical concept ‘Hunger’, because
they contain the term “hunger” in common.

In this work, we go beyond string matching. We
propose to learn and exploit the semantic simi-
larity between texts from social media messages
and medical concepts using deep neural networks.
In particular, we investigate the use of techniques
from two families of deep neural networks, i.e. a
convolutional neural network (CNN) and a recur-
rent neural network (RNN), to learn the mapping
between social media texts and medical concepts.
We evaluate our approaches using three different
datasets that contain messages from Twitter and
blog posts. Our experimental results show that our
proposed approaches significantly outperform ex-
isting strong baselines (e.g. DNorm) across all of
the three datasets. The performance improvement
is by up to 44%.

The main contributions of this paper are three-
fold:

1. We propose two novel approaches based on
CNN and RNN for medical concept normali-
sation.

2. We introduce two datasets with the gold-
standard mappings between medical con-
cepts and social media texts extracted from
tweets and blog posts, respectively.

3. We thoroughly evaluate our proposed ap-
proaches using these two datasets and an ex-
isting dataset of tweets related to the topic
of adverse drug reactions (ADRs) (Lim-
sopatham and Collier, 2015a).

The remainder of this paper is organised as fol-
lows. In Section 2, we discuss related work and
position our paper in the literature. Section 3 in-
troduces our neural network approaches for med-
ical concept normalisation. We describe our ex-
perimental setup and empirically evaluate our pro-
posed approaches in Sections 4 and 5, respec-
tively. We provide further analysis and discussion
of our approaches in Section 6. Finally, Section 7
provides concluding remarks.

2 Related Work

Existing techniques for concept normalisation are
mostly based on string matching (e.g. (Tsuruoka
et al., 2007; Ristad and Yianilos, 1998; Lu et
al., 2011; McCallum et al., 2012). For exam-
ple, McCallum et al. (2012) used conditional ran-
dom field to learn edit distance between phrases.
In the medical domain, Tsuruoka et al. (2007)
learned mappings between phrases in medical
documents and medical concepts by using string
matching features, such as character bigrams and



common tokens. Meanwhile, Metke-Jimenez and
Karimi (2015), and O’Connor et al. (2014) used
term weighting techniques, such as TF-IDF and
BM25 (Robertson and Zaragoza, 2009) to retrieve
relevant concepts. We tackle the concept normali-
sation task in a different manner. In particular, we
use deep neural networks to capture the similarity
and/or dependency between terms and effectively
represent a given social media message in a low di-
mensional vector representation, before mapping
it to a medical concept.

Another research area related to this work is
the exploitation of word embeddings (i.e. dis-
tributed vector representation of words). It has
been empirically shown that word embeddings
can capture semantic and syntactic similarities be-
tween words (Turian et al., 2010; Mikolov et al.,
2013b; Pennington et al., 2014; Levy and Gold-
berg, 2014). The cosine similarity between vectors
of words has a positive correlation with the seman-
tic similarity between them (Mikolov et al., 2013b;
Pennington et al., 2014). Importantly, word em-
beddings have been effectively used for several
NLP tasks, such as named entity recognition (Pas-
sos et al., 2014), machine translation (Mikolov et
al., 2013a) and part-of-speech tagging (Turian et
al., 2010). In the context of concept normalisa-
tion, Limsopatham and Collier (2015a) showed
that effective performance could be achieved by
mapping the processed social media messages and
medical concepts using the similarity of their em-
beddings. In this work, we use word embeddings
as inputs of deep neural networks, which would
allow an effective representation of words when
learning the concept normalisation.

Neural networks, such as convolutional neu-
ral networks (CNN) and recurrent neural net-
works (RNN), have been effectively applied to
NLP tasks, such as NER, sentiment classifica-
tions and machine translation (Collobert et al.,
2011; Kim, 2014; Bahdanau et al., 2014). For
example, Collobert et al. (2011) effectively used
a multilayer neural network for chunking, part-of-
speech tagging, NER and semantic role labelling.
Kim (2014) effectively used CNN with pre-built
word embeddings when performing sentence clas-
sifications. Kalchbrenner et al. (2014) learned rep-
resentation of sentences by using CNN. Mean-
while, Bahdanau et al. (2014) used RNN to encode
a sentence written in one language (e.g. French)
into a fixed length vector before decoding it to

Figure 1: Our CNN architecture for medical con-
cept normalisation.

a sentence in another language (e.g. English) for
translation. Socher et al. used recursive neural net-
works to model sentences for different tasks, in-
cluding paraphrase detection (Socher et al., 2011)
and sentence classification (Socher et al., 2013).
In this paper, we investigate only the use of CNN
and RNN for medical concept normalisation, as
recursive neural networks require parse trees of
input sentences while grammatical rules are typ-
ically ignored in social media messages.

3 Neural Networks for Concept
Normalisation

Next, we introduce our medical concept normali-
sation approaches based on CNN and RNN in Sec-
tions 3.1 and 3.2, respectively.

3.1 CNN for Concept Normalisation

Our first approach uses CNN to learn the seman-
tic representation of a social media message be-
fore mapping it to an appropriate medical concept.
We use a CNN architecture with a single convo-
lutional and pooling layer, as shown in Figure 1.
Specifically, we firstly represent a given social me-
dia message of length l words (padded where nec-
essary) using a sentence matrix S ∈ Rd×l:

S =

 | | | |
x1 x2 x3 ... xl

| | | |

 (1)

where each column of S is the d-dimensional vec-
tor (i.e. embedding) xi ∈ Rd of each word in
the social media message, which can be retrieved
from pre-built word embeddings. This allows the
model to take into account semantic features from
the embeddings of each word.



Figure 2: Our RNN architecture for medical con-
cept normalisation.

We then apply a convolution operation using a
filter w ∈ Rd×h to a window of h words. In par-
ticular, the filter w is convolved over the sequence
of words in the sentence matrix S to create a fea-
ture matrix C. Each feature ci in C is extracted
from a window of words xi:i+h−1, as follow:

ci = f(w · xi:i+h−1 + b) (2)

where f is an activation function, such as sigmoid
or tanh, and b ∈ R is a bias. Note that multi-
ple filters (e.g. using different size h of window of
words) can be used to extract multiple features.

This convolution operation enables the learning
of dependencies between words from their seman-
tic representation (i.e. word embeddings). In order
to capture the most important features, max pool-
ing (Collobert et al., 2011) is applied to take the
maximum value of each row in the matrix C:

cmax =

max(C1,:)
...

max(Cd,:)

 (3)

Finally, the fixed sized vector cmax forms a
fully connected layer, which is used as inputs of
softmax for multi-class classification. Indeed, the
vector cmax provides a sentence representation
that captures an extensional semantic information
of the social media message for softmax to map to
an appropriate medical concept.

3.2 RNN for Concept Normalisation
Our second approach uses RNN to capture the se-
mantics of sequences of words in a social media
message during normalisation. This approach is
different from the CNN approach (introduced Sec-
tion 3.1) in that instead of using the convolutional

TwADR-S TwADR-L AskAPatient
|Q| 201 1,436 8,662
|VQ| 488 995 2,872
|C| 58 2,200 1,036
|VC | 98 2,394 1,200
|Q 7→ C|avg 3.4655 0.6428 8.3610
|Q 7→ C|SD 5.6264 3.3168 39.2009
|Q 7→ C|min 1 0 1
|Q 7→ C|max 35 58 1,073

Table 2: Statistics of the datasets used in the exper-
iments. |Q|: Number of queries. |VQ|: Vocabulary
size of queries. |C|: Number of target concepts.
|VC |: Vocabulary size of definition of target con-
cepts. |Q 7→ C|avg and |Q 7→ C|SD: Average
number of queries mapped to each target concept,
and its standard deviation (SD). |Q 7→ C|min and
|Q 7→ C|max: Mininum and maximum number of
queries mapped to a given target concept, respec-
tively.

layer to learn the representation of social media
messages (i.e. the vector representation at the fully
connected layer), our RNN approach deploys a re-
current layer, as shown in Figure 2. Similar to
the CNN approach, we initially represent a social
media message of length l words using a sentence
matrix S ∈ Rd×l, as in Equation (1).

Then, the recurrent layer processes the vector xi

of each word in the social media message sequen-
tially and produces a hidden state output hi ∈ Rk,
where k ∈ Z and k > 0. Importantly, when
processing each input vector xi, the hidden state
output hi−1 from the previous word is also recur-
sively taken into account:

hi = f (hi−1,xi) (4)

where f is a recurrent unit, such as long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) and gated recurrent unit (GRU) (Cho et
al., 2014).

Finally, the hidden state output hl, which is the
output from processing the last word of the social
media message, is used as an input of the soft-
max for identifying the appropriate concept, in the
same manner as the vector at the fully connected
layer of the CNN approach in Section 3.1.

4 Experimental Setup

4.1 Datasets

To evaluate our proposed approaches, we use three
different datasets (namely, TwADR-S, TwADR-L



and AskAPatient)4, where the task is to map a
social media phrase to a relevant medical con-
cept. In these datasets, a given social media
phrase is mapped to only one medical concept.
Table 2 shows statistics for the three datasets.
In particular, TwADR-S is the dataset provided
by Limsopatham and Collier (2015a), which con-
tains 201 Twitter phrases and their corresponding
SNOMED-CT5 concept. The total number of tar-
get concepts is 58, while on average a medical
concept can be mapped by 3.47 queries with the
standard deviation of 5.63.

The TwADR-L dataset is our new dataset that
we constructed from a collection of three months
of tweets (between July and November 2015),
downloaded using the Twitter Streaming API6 by
filtering using the name of a pre-defined set of
drugs, which have been used in the literature for
ADR profiling (e.g. cognitive enhancers) (Bender
et al., 2007). These tweets were sampled and then
annotated by undergraduate-level linguists. This
collection contains 1,436 Twitter phrases that can
be mapped to one of 2,220 medical concepts from
the SIDER 4 database of drug profiles7. Note that
1,947 from the 2,220 concepts are not relevant to
any of the Twitter phrases.

For the AskAPatient dataset, we extracted the
gold-standard mappings of social media messages
and medical concepts from the ADR annotation
collection of Karimi et al. (2015). Our AskA-
Patient dataset contains 8,662 phrases8, each of
which can be mapped to one of the 1,036 med-
ical concepts from SNOMED-CT and AMT (the
Australian Medicines Terminology). We expect
this dataset to be less difficult than TwADR-S and
TwADR-L, as the nature of blog posts is less in-
formal and ambiguous than Twitter messages.

For each of the datasets, we randomly divide
it into ten equally folds, so that our approaches
and the baselines would be trained on the same
sets of data. We evaluate our approaches based on
the accuracy performance, averaged across the ten
folds. The significant difference between the per-
formance of our approaches and the baselines is
measured using the paired t-test (p < 0.05).

4TwADR-L and AskAPatient datasets are available on
Zenodo.org (DOI:http://dx.doi.org/10.5281/zenodo.55013).

5http://www.ihtsdo.org/snomed-ct.
6https://dev.twitter.com/streaming/

overview
7http://sideeffects.embl.de/
8From blog posts on http://www.askapatient.

com website.

4.2 Pre-trained Word Embeddings

As our CNN (Section 3.1) and RNN (Section 3.2)
approaches require word vectors as inputs, we
investigate the use of two different pre-trained
word embeddings. The first word embeddings
(denoted, GNews) are the publicly available 300-
dimension embeddings (vocabulary size of 3M)
that were induced from 100 billion words from
Google News using word2vec (Mikolov et al.,
2013b)9, which has been shown to be effective for
several tasks (Baroni et al., 2014; Kim, 2014). The
second word embeddings (denoted, BMC) induced
from 854M words of medical articles downloaded
from BioMed Central10 by using the skip-gram
model from word2vec (with default parameters).
The BMC embeddings also have 300 dimension.
For the words that do not existing in any embed-
dings, we use a vector of random values sampled
from [−0.25, 0.25].

As an alternative, we also use randomly gener-
ated embeddings (denoted, Rand) with 300 dimen-
sions, where a vector representation of each word
is randomly sampled from [−0.25, 0.25]. This al-
lows the investigation of the effectiveness of our
approaches when the semantic information from
pre-built embeddings is not available.

4.3 Parameters of Our CNN and RNN
Approaches

For our CNN approach, we use the filter w with
the window size h of 3, 4 and 5, each of which
with 100 feature maps, which have shown to be ef-
fective for modelling sentences in sentiment anal-
ysis (Kim, 2014). For the RNN, we use gated re-
current unit (GRU) (Cho et al., 2014) and set the
size k of the output vector of each recurrent unit to
100.

In addition, for both CNN and RNN, we use rec-
tifier linear unit (ReLU) (Nair and Hinton, 2010)
as activation functions. We also apply L2 regular-
isation of the weight vectors. We train the mod-
els over a mini-batch of size 50 to minimise the
negative log-likelihood of correct predictions. The
stochastic gradient descent with back-propagation
is performed using Adadelta update rule (Zeiler,
2012). We initially set the number of epochs for
training both CNN and RNN approaches to be
100, and allow the models to update the input

9https://code.google.com/p/word2vec/
10http://www.biomedcentral.com/about/

datamining



embeddings in the sentence matrix S. Later, in
Sections 6.2 and 6.3, we discuss the performance
achieved as we vary the number of epochs used for
training the models, and the performance achieves
when we allow and do not allow the models to up-
date the input embeddings, respectively.

4.4 Baselines
We consider five different baselines as follows:

1. TF-IDF: A traditional term matching-based
approach, using the TF-IDF score.

2. BM25: A traditional term matching-based
approach, using the BM25 score, which has
shown to be effective for several text retrieval
tasks (Robertson and Zaragoza, 2009)

3. EmbSim: The cosine similarity between the
word vector representation of a social media
phrase and the description of a medical con-
cept. If the phrase (or the description) con-
tains several words, we represent it by adding
up the values of the same dimension of the
embedding of each word.

4. DNorm: A machine learning-based ap-
proach that exploits the relationships between
words (e.g. synonyms) learned from train-
ing data (Leaman and Lu, 2014). This ap-
proach achieved state-of-the-art performance
for several medical concept normalisation
tasks (Suominen et al., 2013; Doğan et al.,
2014). Note that we customise the open-
source version11 of DNorm to enable the
mapping to a specific set of the target con-
cepts for each dataset.

5. P-MT: The concept normalisation approach
that translates social media texts to a formal
medical text before mapping to appropriate
medical concepts using the cosine similarity
of their embeddings (Limsopatham and Col-
lier, 2015a). We use the variant where the
top-5 translations are used to map the med-
ical concepts by taking the ranked position
into account. We calculate the cosine sim-
ilarity using either the GNews or the BMC
embeddings.

6. LogisticRegression: A variant of our pro-
posed approaches where we concatenate em-
beddings of terms (padded where necessary)

11http://www.ncbi.nlm.nih.gov/
CBBresearch/Lu/Demo/tmTools/#DNorm

in each social media phrase into a fixed-size
sentence vector, before using this vector as
input features for a multi-class logistic re-
gression classifier.

Another possible baseline is a word-sense dis-
ambiguation system, such as IMS (Zhong and Ng,
2010). Nevertheless, the results from our initial
experiments using IMS showed that it could not
perform effectively on the three datasets. This is
because the performance of IMS depends heavily
on the contexts (i.e. words surrounding the input
phrase); however, such contexts are not available
in any of the three datasets. Therefore, we do not
report the performance of IMS in this paper.

Note that for the baselines that require training
data (i.e. DNorm and P-MT) and our two proposed
approaches, apart from the training data provides
with each fold of the datasets, we also train them
using the descriptions of the target medical con-
cepts, as these data are also used by the non-
supervised baselines (i.e. TF-IDF, BM25 and Em-
bSim).

5 Experimental Results

In this section, we compare the performance of
our CNN and RNN approaches for medical con-
cept normalisation against the six baselines, intro-
duced in Section 4.4. Table 3 compares the perfor-
mances of our proposed approaches with the base-
lines in terms of accuracy on the three datasets (i.e.
TwADR-S, TwADR-L, AskAPatient). Overall, as
expected, the accuracy performance achieved by
our approaches and the baselines on the AskA-
Patient dataset is higher than the TwADR-L and
TwADR-S. This is due to nature use of language
in Twitter, which is more ambiguous and infor-
mal than blog posts. When comparing among
the existing baseline approaches, we observe that
DNorm and P-MT are the most effective base-
lines. In particular, DNorm outperforms the other
baselines for the TwADR-S (accuracy 0.2983) and
AskAPatient (accuracy 0.7339) datasets, while
P-MT with GNews embeddings is the most ef-
fective baseline for the TwADR-L dataset (ac-
curacy 0.3371). In addition, term matching-
based approaches, i.e. TF-IDF (accuracy 0.1638,
0.2293 and 0.5547, respectively) and BM25 (ac-
curacy 0.1638, 0.2300 and 0.5546), achieve al-
most similar performances, which are also com-
parable to the performances of EmbSim baselines.
When comparing the effectiveness of different



Approach Word Embeddings
Accuracy

TwADR-S TwADR-L AskAPatient
TF-IDF - 0.1638 0.2293 0.5547
BM25 - 0.1638 0.2300 0.5546
EmbSim GNews 0.2494 0.2326 0.5422
EmbSim BMC 0.1348 0.2057 0.5141
DNorm - 0.2983 0.3099 0.7339
P-MT GNews 0.2346 0.3371 0.7235
P-MT BMC 0.1248 0.3114 0.7126
LogisticRegression GNews 0.3186 0.3409 0.7767
LogisticRegression BMC 0.3036 0.3548 0.7752
CNN Rand 0.3229• 0.4267∗◦• 0.8013∗◦•

CNN GNews 0.4174∗◦• 0.4478∗◦• 0.8141∗◦•
CNN BMC 0.3921∗◦• 0.4415∗◦• 0.8139∗◦•

RNN Rand 0.2936• 0.3791∗◦• 0.7991∗◦•

RNN GNews 0.3529∗◦• 0.3882∗◦• 0.7998∗◦•
RNN BMC 0.3331• 0.3847∗◦• 0.7996∗◦•

Table 3: The accuracy performance of our proposed approaches and the baselines. Significant differences
(p < 0.05, paired t-test) compared to the DNorm, P-MT with GNews embeddings, and P-MT with BMC
embeddings, are denoted ∗, ◦ and •, respectively.

pre-trained embeddings used in EmbSim and P-
MT, we observe that GNews is more effective than
BMC for both approaches, across all of the three
datasets.

Next, we discuss the performance of our CNN
and RNN approaches. From Table 3, we ob-
serve that both CNN and RNN markedly outper-
form all of the existing baselines for all of the
three datasets. When compared with DNorm and
P-MT with GNews baselines, which are the most
effective existing baselines, we observe that both
CNN and RNN significantly (p < 0.05, paired
t-test) outperform the two baselines for all of
the three datasets. Indeed, for the TwADR-L
dataset, CNN with GNews (accuracy 0.4478) out-
performs DNorm (accuracy 0.3099) by 44%. In
addition, the choice of embeddings has a marked
impact on the achieved performance. In particu-
lar, the GNews embeddings benefit both CNN and
RNN more than the BMC embeddings, which is
in line with the previous finding that GNews is
more useful than BMC for the EmbSim and P-
MT baselines. On the other than, the randomly
generated embeddings (i.e. Rand) are less useful.
These results show that the semantics captured in
word embeddings are useful for both CNN and
RNN approaches for medical concept normalisa-
tion. However, for both CNN and RNN, the choice
of embeddings that are employed has less impact

on the performance for the AskAPatient dataset,
which has greater number of training data.

Furthermore, we observe that the LogisticRe-
gression baseline, a variant of our proposed ap-
proach that uses the multi-class logistic regression
instead of neural networks for identifying rele-
vance concepts, also outperforms the all of the ex-
isting baselines. However, it performs worse than
both CNN and RNN approaches. This shows that
while logistic regression can exploit the semantics
of embeddings of individual terms in social media
texts (at the word level), it cannot learn the seman-
tics of the whole phrase as effectively as CNN and
RNN.

6 Analysis & Discussions

In this section, we further analyse the performance
achieved by our proposed approaches. As the per-
formance achieved by our CNN approach is better
than that of our RNN approach, we discuss only
our CNN approach in this section.

6.1 Failure Analysis

We first discuss the results achieved by the base-
lines and our CNN approach. As expected, we
observe that all approaches perform very well for
the social media phrases that lexically match with
the definition of the medical concepts, e.g. the so-
cial media phrase “attention deficit disorder” is



(a) TwADR-S (b) TwADR-L (c) AskAPatient

Figure 3: The accuracy performance achieved by training with different numbers of epochs for the three
datasets.

mapped to the medical concept ‘Attention Deficit
Disorder’. However, for a more complex phrases,
such as “appetite on 10”, “my appetite way up”,
“suppressed appetite”, the baselines, including
DNorm and P-MT, cannot effectively incorporate
the modifiers of the word “appetite” in different
phrases. For example, “appetite on 10”, “my ap-
petite way up” should be mapped to ‘Increased
Appetite’, while “suppressed appetite” should be
mapped to ‘Loss of Appetite’. On the other hand,
for social media phrases that do not have any terms
in common with the definition of any medical con-
cepts, all of the baselines performs poorly for most
of the cases. For instance, even though DNorm
can learn that the term “focusing” has some rela-
tionship with “concentration”, it maps any phrases
containing “focusing” to the ‘Attention Concentra-
tion Difficulty’ concept, including phrases, such as
“focusing monster”, which should be mapped to
‘Consciousness Abnormal’. Our CNN approach
could deal with most of these cases effectively,
as it considers the semantic representation of the
whole phrase during normalisation.

6.2 Impact of Number of Training Epochs

Next, we discuss the normalisation performance
as we vary, between 1 and 200, the number of
epochs used for training our CNN model. Fig-
ures 3(a), 3(b) and 3(c) show the performance in
terms of accuracy achieved during training and
testing for the TwADR-S, TWADR-L and AskAP-
atient datasets, respectively. We observe that train-
ing can be effectively achieved at around 60 - 70
epochs for the TwADR-S and TwADR-L datasets,
and around 40 epochs for the AskAPatient dataset,
before the performance becomes stable. We notice
a gap between the performance achieved during
training and testing, especially for the TwADR-S

Dataset
Accuracy

CNN with CNN with
updated emb. fixed emb.

TwADR-S 0.4174 0.4369
TwADR-L 0.4478 0.4590
AskAPatient 0.8141• 0.7869

Table 4: The accuracy performance of our CNN
approach with the GNews embeddings, when al-
lowing (updated emb.) and not allowing (fixed
emb.) the model to update the input word embed-
dings. Significant difference (p < 0.05, paired t-
test) between the performance achieved by the two
variants, on each dataset, is denoted •.

and TwADR-L datasets; however, this gap should
be narrower if more training data are available.

6.3 Impact of Fixed Embeddings

In this section, we compare the performance of
our CNN with GNews embeddings when we al-
low (updated emb.) and when we do not allow
(fixed emb.) the input embeddings to be updated.
Table 4 reports the accuracy performance of the
two variants for the three datasets. We observe that
for TwADR-S and TwADR-L datasets, which are
smaller datasets (dataset size of 201 and 1,436, re-
spectively), a better performance can be achieved
if the model is not allowed to update the embed-
dings of the input phrases. In contrast, for the
AskAPatient dataset (dataset size of 8,662), allow-
ing the model to update the embeddings results
in a significantly (paired t-test, p < 0.05) better
performance. We observe the same trends of per-
formance when using BMC embeddings. These
results suggest that for small datasets, we should
leverage semantics from pre-built word embed-
dings and do not allow the model to update the



embeddings. Meanwhile, for a larger dataset, fur-
ther performance improvement can be achieved by
allowing the model to update the embeddings.

7 Conclusions

We have motivated the importance of semantics
when normalising medical concepts in social me-
dia messages. In particular, as social media mes-
sages are typically ambiguous, we argue that ef-
fective concept normalisation should deal with
them at the semantic level. To do so, we intro-
duced two neural network-based approaches for
medical concept normalisation, which are based
on convolutional and recurrent neural network ar-
chitectures. Our experimental results evaluated on
three different social media datasets showed that
both of our approaches markedly and significantly
outperformed several strong baselines, including
an existing approach that achieved state-of-the-art
performance on several medical concept normal-
isation tasks. From the analysis of the results,
we found that while some existing approaches can
capture synonyms of words, they could not lever-
age the semantic meaning of the social media mes-
sage. Our approaches overcomes this by learn-
ing the semantic representation of the social media
message before passing it to a classifier to match
an appropriate concept.
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