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ABSTRACT
Interleaving is an online evaluation method to compare two
alternative ranking functions based on the users’ implicit
feedback. In an interleaving experiment, the results from
two ranking functions are merged in a single result list and
presented to the users. The users’ click feedback on the
merged result list is analysed to derive preferences over the
ranking functions. An important property of interleaving
methods is their sensitivity, i.e. their ability to reliably derive
the comparison outcome with a relatively small amount of
user behaviour data. This allows testing of changes in the
search engine ranking functions frequently and, as a result,
rapid iterations in developing search quality improvements
can be achieved.

In this paper we propose a novel approach to further im-
prove interleaving sensitivity by using pre-experimental user
behaviour data. In particular, the click history is used to
train a click model, which is then used to predict which
interleaved result pages are likely to contribute to the ex-
periment outcome. The probabilities of presenting these in-
terleaved result pages to the users are then optimised, such
that the sensitivity of interleaving is maximised. In order
to evaluate the proposed approach, we re-use data from six
actual interleaving experiments, previously performed by a
commercial search engine. Our results demonstrate that the
proposed approach outperforms a state-of-the-art baseline,
achieving up to a median of 48% reduction in the number
of impressions for the same level of confidence.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords: interleaving, online evaluation

1. INTRODUCTION
The evaluation of retrieval systems is vital to ensure progress

in information retrieval (IR). Historically, the system-based
evaluation with manual judgements [18] motivated by Cran-
field’s experiments has proven popular. However, this ap-
proach has several limitations, as discussed by Voorhees [18].
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Firstly, often the manual judgements are expensive to col-
lect, since labelling requires labour from the trained profes-
sionals. Secondly, document relevance can be hard to define,
especially when the user’s intent can be ambiguous or the
result set is personalised [1]. On the other hand, the online
user-based experimental methods, such as A/B testing (e.g.,
[17]) and interleaving [9, 10, 11, 14], can overcome these lim-
itations. As these methods leverage the live query stream
to infer the users’ preferences, they are believed to represent
the actual preferences of the users.

Interleaving was first proposed by Joachims et al. [10, 11]
as an online unbiased evaluation method. The idea behind
this method is the following. Given two ranking algorithms
we want to compare, A and B, we run an interleaving ex-
periment on a portion of the query stream. In a user session
affected by the experiment, the results of A and B are mixed
into an interleaved result list that is shown to the user just
as a regular search result page. Next, the user’s click be-
haviour is interpreted in order to derive which of the tested
algorithms provides the users with a better results ranking.

Following Radlinski and Craswell [12, 13], we define the
sensitivity of an interleaving method as its ability to derive
reliable experiment outcomes with little data. High levels
of sensitivity are important in web search retrieval for sev-
eral reasons. Firstly, sensitive methods allow search engines
to evaluate improvements and iterate fast, i.e. to make more
business decisions in a unit of time and progress quickly. Sec-
ondly, with a sensitive method, it is possible to evaluate even
subtle improvements in a short time. Finally, since a con-
siderable part of the evaluated changes may lead to a degra-
dation of the user experience, sensitive methods can help to
identify such changes early and reduce the user frustration.

In this work, we concentrate on improving the sensitiv-
ity of the interleaving methods. As we will discuss in the
next section, this problem has received a considerable at-
tention from the research community. However, we address
this problem from a new perspective. Our hypothesis is that
by using the user behaviour data prior to the start of the
experiment, it is possible to adjust how often a particular
interleaved result list is shown, to achieve higher levels of
sensitivity.

In order to test this hypothesis, we propose and evaluate a
method to leverage historical user behaviour data observed
in the click log to optimise the parameters of the interleaving
experiment.

The contributions of this paper are three-fold:

• We propose a theoretically-motivated approach to in-
crease the sensitivity of the interleaving experiments



by adjusting how often a particular interleaved result
page is shown;

• We propose a user click model-based approach to pre-
dict the parameters of this optimisation problem be-
fore the experiment is performed;

• We perform a thorough experimental study of the pro-
posed algorithms.

The remainder of the paper is organised as follows. Af-
ter discussing the related work in Section 2, we derive a
problem of optimisation of the interleaving experiment pa-
rameters in Section 3. Next, in Section 4 we discuss how
this optimisation problem can be formulated and solved be-
fore deploying the experiment online. The dataset and the
evaluation methodology used in our study are discussed in
Sections 5 and 6, respectively. Further, we report our re-
sults in Section 7 and close the paper with conclusions and
a discussion of the possible future work in Section 8.

2. RELATED WORK
We consider our work to be related with two areas of re-

search. Firstly, the research in the area of the interleaving
algorithms and, in particular, a variety of methods to im-
prove sensitivity of interleaving is relevant to this work and
we discuss it in Section 2.1. Secondly, in this paper, we rely
on the recent progress in the user click modelling methods,
discussed in Section 2.2.

2.1 Interleaving methods
Three popular interleaving methods were proposed so far:

Balanced Interleaving [10], Team Draft [14], and Proba-
bilistic Interleaving [9]. In addition, several modifications
of these methods aimed to improve their sensitivity were
considered [3, 12, 19]. While Radlinski and Craswell [12]
aimed to study the agreement between various metrics used
in Cranfield paradigm evaluations with outcomes of the on-
line interleaving experiments, they also paid considerable at-
tention to the problem of weighting clicks in the Team Draft
algorithm to ensure the sensitivity of the experiments. They
demonstrated that weighting the user clicks by the logarithm
of the clicked document rank can lead to higher sensitivity
of the interleaving experiments.

A similar idea was studied by Yue et al. [19], who proposed
a method to train a credit assignment scheme so that the
overall sensitivity of the interleaving is increased. More pre-
cisely, Yue at al. considered a supervised machine-learning
problem where the outcome of the interleaving experiment
known. Given the user behaviour data for these experi-
ments, they learned a click weighting scheme so that the
power of a statistical test on new experiments was max-
imised. Chapelle et al. [3] performed a thorough experimen-
tal comparative study of interleaving algorithms, concen-
trating on the Balanced Interleaving and Team Draft algo-
rithms. In particular, they investigated relative sensitivity
of these algorithms and several of their modifications with
non-uniform click weighting schemes. For instance, their re-
sults suggested that ignoring clicks on the top results shared
by both ranked lists considerably improved the sensitivity of
the Team Draft algorithm.

As we can see from the above discussed work, a consid-
erable body of previous research studied how to improve
the sensitivity of the online experiments by means of ad-
justing the credit assignment (click weighting) scheme used

in the corresponding interleaving algorithm. In our work,
we consider a somewhat complimentary approach: given a
particular credit assignment scheme, we investigate how one
can control the probabilities of showing the interleaved re-
sult pages to the users to achieve maximum sensitivity. We
expect that combining the previously proposed click weight-
ing schemes with the approach considered in this work can
lead to even higher levels of sensitivity. However we leave a
thorough study of the possible combinations as a promising
direction of future research.

Our proposed approach is based on the study of Radlinski
and Craswell [13], who proposed a formal Optimised Inter-
leaving framework describing how three components of an
interleaving method (a set of interleaved result lists, a credit
assignment scheme, and a distribution over interleaved re-
sult lists) can be combined so that the resulting interleaving
algorithm is unbiased. Their proposed framework was used
to build a family of interleaving algorithms with different
credit assignment schemes. They also optimised the distri-
bution over the interleaved result sets so that the uncer-
tainty in a winner of a particular impression is maximised.
This uncertainty is calculated with respect to a randomly
clicking user. Despite relying on the framework proposed
by Radlinski and Craswell [13], our approach has the follow-
ing differences. Firstly, we study a different perspective of
the interleaving sensitivity. Instead of considering the win-
ner uncertainty within a single interleaved result list, we are
aiming to reduce the number of user impressions that con-
tribute little to the experiment outcome. Secondly, instead
of considering a randomly clicking user, we leverage massive
click log data containing the real user feedback and use it to
train a click model that is further used to predict the actual
behaviour of a real user.

Another closely related work is by Hofmann et al. [8].
In this work, the authors study the possibility to leverage
the query log data to predict an interleaving experiment
outcome without actually running the experiment. Their
results suggests that Probabilistic Interleaving [9] can effec-
tively re-use such historical data. In contrast, in our work
we aim to leverage historical data to improve the sensitivity
of the future interleaving experiments.

2.2 Click models
Apart from the research in the area of the interleaving

methods, this paper is based on the recent progress in re-
search on user behaviour modelling. The problem of inter-
preting and modelling the user’s clicking behaviour is non-
trivial, since the user’s actions are prone to several biases.
Arguably, the position bias is the most studied one [6]. It af-
fects the way users click on results: results that are ranked
higher collect more clicks from users even if they are not
as relevant as the results ranked lower. One of the ap-
proaches to model the position bias is considered in the posi-
tion click models [5, 15]. The underlying idea was formalised
by Craswell et al. [5] in the examination hypothesis: a search
result is clicked only if it is examined, and the user considers
the result to be relevant. The position-based models assume
that the examination probability depends only on the rank
the result is presented at. A more sophisticated approach
is considered by the cascade click model [5]. This model is
based on the following assumption: a result can be exam-
ined only if all of the results ranked higher were examined.
An important extension of the cascade model is the Dy-
namic Bayesian Network (DBN) click model later proposed



by Chapelle and Zhang [4]: this model additionally accounts
for the effect of the users abandoning their search, and is ca-
pable of modelling sessions with several clicks, by separating
the perceived and the actual relevance of the results.

In most cases, the user click modelling has been used to ex-
tract new ranking features, or to substitute expensive man-
ual assessment procedures [4]. In our work, the click mod-
elling is used to predict the user behaviour once a new result
page is shown to the user. A similar scenario was considered
by Guo et al. [7] to evaluate click models by their ability to
predict the position of the first and the last clicks.

A somehow related approach was used by Hofmann et
al. [9] to evaluate interleaving algorithms: the parameters
of the Dependent Click Model [7] were estimated from the
available document relevance judgements, and the result-
ing click model was used to evaluate interleaving algorithms
in the absence of an actual query log by generating a syn-
thetic one. In contrast, in our work, we learn a user click
behaviour model from the actual, not synthetic, query log
data and hence leverage it for a completely different purpose:
optimising an interleaving algorithm.

As can be seen from the above discussed work, the sensi-
tivity of the interleaving methods attracted a considerable
attention from the IR community. However, the possibil-
ity to use the historical user behaviour data to increase the
interleaving sensitivity has not been studied before. After
reviewing how interleaving experiments are performed, we
describe the proposed interleaving approach in Section 3.

3. OPTIMISING INTERLEAVING
SENSITIVITY

Before discussing the sensitivity of the interleaving exper-
iments, we briefly review how the interleaving experiments
are performed and introduce the required notation. Each
interleaving algorithm essentially consists of three parts: a
rule to build a set of the interleaved result lists for a query;
a credit assignment scheme used to interpret the user clicks;
and a distribution determining how often a particular inter-
leaved result list is shown to the users. The latter is further
referred to as the experiment policy. Further, assuming that
a query q is fixed, let us introduce the notation used in this
paper. L is a set of considered interleaved result lists, Li
stands for the ith interleaved result list, and Li(r) denotes a
result ranked on the rth rank of Li. Similarly to [3, 13], we
define a credit function δi(r) that describes a score assigned
to A (δi(r) > 0) or B (δi(r) < 0) after a user clicked on the
result ranked on position r in the result list Li.

A part of the user’s interaction with a search engine result
page, which starts with submitting a query and ends when
the user submits a new query or leaves the search engine,
is further referred to as impression. Each impression v is
associated with a shown result page Li and with the user’s
clicks. The interleaving credit scheme can be used to derive
which of the compared systems (A or B) wins in a particu-
lar impression. More formally, the user’s clicks observed in a
particular impression v with a result list Li shown are trans-
formed into scores h(v) =

∑
r δi(r)1{r clicked in v}, where

1{·} is an indicator function. After that, an impression-level
aggregation c(·) can be applied. For instance, this aggrega-
tion can represent which alternative (A or B) wins a par-
ticular impression (i.e. c(v) = sign(h(v))) or normalise the
score by the number of clicks [3].

After running the experiment, a single statistic ∆ is used
to describe the experiment outcome [3]:

∆ =
1

N

N∑
j=1

c(vj) (1)

where N denotes the total number of impressions.
To simplify the analysis, we follow Yue et al. [19] and con-

sider that A (B) wins in the interleaving experiment if it
receives more credit than B (A). This approach is equiv-
alent to considering an identity credit aggregation function
c(v). In order to represent the experiment outcome in this
case, we define w∗A to be the total credit assigned to A during
the experiment. Similarly, w∗B denotes the credit assigned
to B. As a result, the experiment outcome can be defined
as follows:

∆∗ =
w∗A − w∗B

N
(2)

Informally, ∆∗ equates to the difference in the credits as-
signed to A and the credits assigned to B, divided by the
total number of impressions the users observed in the exper-
iment. Again, ∆∗ > 0 means that A outperforms B.

We hypothesise that organising the interleaving experi-
ment policy in such a way that the result pages Li that are
unlikely to contribute to the difference in Equation (2) are
shown as rarely as possible should improve the ability to
derive reliable conclusions with less impressions. In other
words, with N being fixed, the interleaved result pages that
often lead to ties1 should be shown less frequently in com-
parison with those that witness a contrast between A and B.

In the remainder of this section, we study how this goal
can be achieved based on the Optimised Interleaving frame-
work [13], initially assuming that information about the fu-
ture user behaviour is available at the start of the experi-
ment. We will relax this assumption in Section 4.

At first, let us denote the credit assigned to A after show-
ing the result list Li as w∗iA . Similarly, we define w∗iB . Given
this notation, it is possible to expand w∗A and w∗B in the
following way:

w∗A =
∑
i

w∗iA ; w∗B =
∑
i

w∗iB (3)

Putting (3) into (2) and further grouping the terms in the
numerator, we re-write ∆∗ as follows:

∆∗ =

∑
i w
∗i
A −

∑
i w
∗i
B

N
=

∑
i w
∗i
A − w∗iB
N

(4)

Next, we denote as Ni the number of impressions where Li
was shown and re-write (4) in the following way:

∆∗ =
∑
i

Ni
N

w∗iA − w∗iB
Ni

(5)

Further, we refer to πi as the probability of showing Li in
the interleaving experiment, i.e. the vector π represents the
experiment policy. Substituting πi, we obtain:

∆∗ =
∑
i

πi
w∗iA − w∗iB

Ni
(6)

Intuitively, with the total number of impressions N fixed,
higher absolute values of ∆∗ correspond to higher contrast
between A and B, and lead to the ability to determine the
experiment outcome with higher reliability. Thus, let us
consider a simple upper bound on the absolute value of ∆∗:

1For instance, the result pages that do not attract clicks or
often have similar credits assigned to both alternatives.



|∆∗| =

∣∣∣∣∣∑
i

πi
w∗iA − w∗iB

Ni

∣∣∣∣∣ ≤∑
i

πi

∣∣w∗iA − w∗iB ∣∣
Ni

(7)

Indeed, the absolute value of ∆∗ is bounded by the product
of the experiment policy and the statistics of the interleaved

results lists
|w∗i

A −w
∗i
B |

Ni
. This quantity is related to the contri-

bution that the impressions with Li make to the difference
(2), as we discussed earlier.

So far, we have discussed the experiment outcome ∆∗ and
obtained the upper bound on its absolute value. However,
this upper bound also provides us with an idea how the ex-
periment policy can be adjusted before starting the experi-
ment. Despite the fact that a higher upper bound does not
necessary imply a higher value of ∆∗, in this work we argue
that controlling πi, so that the upper bound increases, leads
to higher sensitivity of the interleaving. Intuitively, this idea
can be expressed as follows: in a real world scenario, with
everything else being equal, it is generally better not to show

a result list Li with a low value of
|w∗i

A −w
∗i
B |

Ni
.

Having discussed the motivation behind our approach, let
us consider the problem of selecting the optimal experiment
policy before starting the experiment. Due to the random
nature of user behaviour, it is reasonable to consider the
expected difference in the credits assigned to A and B for

a particular interleaved result list Li, instead of
|w∗i

A −w
∗i
B |

Ni
,

which approaches this expectation as the number of impres-
sions Ni grows. Further, we denote this quantity as µi:

µi = lim
Ni→∞

∣∣∣∣[w∗iA − w∗iBNi

]∣∣∣∣ =
∣∣∣E [CiA − CiB]∣∣∣ (8)

where CiA and CiB stand for the credits assigned to A and B
after demonstrating the result list Li to a user, respectively.
The values of µi form the vector µ.

As discussed above, our goal is to adjust policy π so that
the upper bound (7) increases. In order to achieve that, we
leverage the Optimised Interleaving framework [13], which
can be used to optimise the interleaving experiment proper-
ties without introducing biases. In particular, Radlinski and
Craswell [13] define a criterion of the unbiased interleaving
policy: the expected credit from a randomly clicking user
should be zero. Formally, for an interleaving method to be
unbiased, the following constraint on its set of interleaved
result lists L, its credit function δ, and its policy π has to
be met:

∀k
|L|∑
i=1

πi

k∑
r=1

δi(r) = 0 (9)

Temporarily assuming that values of µ are known and com-
bining (7), (8), and (9) we formulate our optimisation prob-
lem as follows:

µTπ → max (10a)

∀k
|L|∑
i=1

πi

k∑
r=1

δi(r) = 0 (10b)∑
i

πi = 1 (10c)

∀i πi ≥ 0 (10d)

Indeed, the solution of the optimisation problem stated
by the set of Equations (10) maximises the upper bound
of the experiment’s outcome |∆∗| (10a), meets the fairness

condition (10b) proposed by Radlinski and Craswell [13],
and represents a valid distribution (10c & 10d). In this work,
we argue that setting the interleaving experiment policy to
the solution of the linear optimisation problem (10) leads to
a higher sensitivity of the experiment.

Since the values of µ are predicted from the noisy user
feedback, this can cause undesired noise to the solution. In-
deed, a small variation in values of µ might result in the
linear programming problem (10) having a completely dif-
ferent solution. In order to reduce this noise, we introduce a
regularisation term to the optimisation objective (10a) that
adds a penalty to solutions that diverge too far from the
uniform policy πU

2. Thus, we replace objective (10a) with
the following expression:

µTπ − α(π − πU )T (π − πU )→ max (10a*)

where α is a non-negative scalar parameter. With α being
zero (10a*) reduces to (10a), while large values of α force
the solution to be the uniform vector. In the latter case,
the pre-experimental user behaviour is ignored and all in-
terleaved result pages are demonstrated to the users with
equal probabilities. If L and δ coincide with that of the
Team Draft algorithm, the uniform policy πU corresponds
to the policy of Team Draft, hence the solution of the opti-
misation problem (10) with large α coincides with the Team
Draft algorithm. Therefore, Team Draft can be seen as a fea-
sible solution of the optimisation problem (10), which does
not rely on the user behaviour information and weights all
possible interleaved result sets equally. On the other hand,
with α = 0 the optimal solution of (10) is completely de-
fined by the noisy estimates of µ from the previous user click
behaviour and becomes “risky”. A higher level of risk may
result in higher improvements in the interleaving sensitivity,
but it also may lead to a decrease in sensitivity when the
estimates of µ are incorrect due to prevalent noise in the
user feedback.

We argue that the parameter α provides a convenient
mechanism to control the amount of prior user feedback in-
troduced into the resulting interleaving algorithm. For in-
stance, α can be set to zero for queries that have sufficiently
large pre-experimental user click data and set to infinity for
queries with little user information available. However, in
this work, we restrict α to be uniform for all queries, and
leave the study of the per-query adaptation of α as a direc-
tion for future work.

Since the values of vector µ are not known before starting
the experiment, a question arises how µ can be estimated.
In this paper, we propose to use pre-experimental click log
data to train a model of the user click behaviour and use it
to predict µ. We discuss this approach in the next section.

4. USING THE PRE-EXPERIMENTAL DATA
As discussed in the previous section, once the values of µ

for the interleaved result pages L are available, it is possible
to optimise the interleaving to achieve a higher sensitivity
by selecting the solution of (10) as the experiment policy. In
this section, we study how µ can be estimated by using the
click log data.

2In the experimental part of this paper, we work with
the Team Draft-based set of interleaved result lists L and
associated credit functions, so πU is a feasible solution of
(10). For other combinations of L and δ, other policies
might be more suitable.



Input: Set of sessions Q; Beta prior parameters:
αa, αs, βa, βs

Output: The click model parameters for each
document u: au, su

aNu ← 0; aDu ← 0
sNu ← 0; sDu ← 0
foreach session s ∈ Q do

foreach result u above or on the last clicked
position do

aDu ← aDu + 1
end
foreach clicked result u do

aNu ← aNu + 1
sDu ← sDu + 1

end
u← last clicked document in s
sNu ← sNu + 1

end
foreach u do

au ← aNu +αa

aDu +αa+βa

su ← sNu +αs

sDu +αs+βs

end
Algorithm 1: Training the sDBN model, as described by
Chapelle et al. [4].

We argue that leveraging the click log data is a very
promising approach due to the following reason. Usually,
only a tiny part of the query stream is used to perform an in-
terleaving experiment, thus the whole query stream provides
a considerably larger amount of data reflecting user prefer-
ences. Moreover, interleaving experiments are performed
on a limited timescale, while commercial search engines can
store query logs spanning several years of operation. As a
result, one can easily obtain two orders of magnitude more
impressions from the non-experimental log than what can be
obtained from a whole experiment run for several weeks. We
consider our goal to leverage this massive evidence to make
the interleaving experiments more sensitive. The approach
we propose achieves this goal in three steps. In the first step,
a click model is trained on the user click behaviour history.
In the next step, this pre-trained model is used to predict
the future user behaviour and to estimate the parameters of
the optimisation problem (10). Finally, we find the optimal
policy and run the interleaving experiment on a part of the
query stream.

In the remainder of this section, we discuss the click model
(Section 4.1), the estimation of the optimisation objective
parameters (Section 4.2), and a possible inter-query bias in-
troduced (Section 4.3).

4.1 Training the click model
The general idea behind predicting the parameters µ of

the optimisation problem (10) is the following. Having ob-
served a massive click log representing the users’ behaviour,
we can train a generative model of the user click patterns.
Once the click model with the pre-trained parameters is
available, it can be used to “explain” the behaviour observed
in the click log and, more importantly, to model how users
will behave once the result page is modified. The latter
case is the most important in our task, since the interleaved
result lists will often contain the same documents, but ar-
ranged differently. Also, these documents are likely to be
presented in the deployed retrieval system before, but at

different positions and surrounded by different documents.
For this reason, we rely on the ability of the underlying click
model to generalise while predicting the user behaviour.

As discussed in Section 2, a variety of generative click
models have been proposed. In this work, we use a sim-
ple yet effective modification of the Dynamic Bayesian Net-
work, simplified DBN (sDBN)3, proposed by Chapelle and
Zhang [4]. Informally, the sDBN model assumes that a user
examines the result list from top to bottom. After examin-
ing a document u, the user either finds it attractive with
probability au and clicks on it, or continues to the next
document. After clicking on a document, the user is satis-
fied with probability su and stops the examination process.
Thus, for a fixed query, the model has two parameters per
document u: attractiveness au and the probability of sat-
isfying the user su. These parameters are learned from a
click log by means of Algorithm 1, described by Chapelle et
al. [4]. This learning procedure imposes Beta priors on the
model parameters and following [4] we set them to 1, i.e.
αa = αs = βa = βs = 1.

After training the model parameters it can be used to
predict µ as we discuss in the next section.

4.2 Estimating the parameters
According to our definition (8), µi equates to the abso-

lute value of the relative difference between credit assigned
to alternatives A and B after observing infinitely many user
interactions, or, alternatively to the absolute value of the ex-
pected difference in the credits assigned to A and B. Under
the sDBN model, this quantity can be calculated analyti-
cally by means of Algorithm 2, as we prove in the following
Lemma 1:

Lemma 1. Algorithm 2 calculates µ, defined in (8).

Proof. Consider an interleaved result list Li and let Pe(r)
denote the probability of the user examining the position
r, Pc(r) denote the probability of clicking on position r by
Pc(r), and Ps(r) denote the probability of the user being sat-
isfied with the document in the rth position after clicking
on it. Under this notation, we can re-write the expectation
in (8) as follows:

E
[
CiA − CiB

]
=
∑
r

δi(r)Pc(r) (11)

Since the sDBN model assumes that the user clicks on a
result only after examining it, we can express Pc(r) in the
following form:

Pc(r) = au(r)Pe(r) (12)

In turn, under the cascade hypothesis the document in the
rth position is examined only if the user is not satisfied with
all the documents ranked above:

Pe(r) =
∏
j<r

1− Ps(j) =
∏
j<r

1− au(r)su(r) (13)

Putting (13) and (12) in (11) we note that Algorithm 2
indeed calculates µ as defined by Equations (8) & (11).

4.3 Discussion
For queries for which there is no user click history avail-

able, the optimal policy can be reduced to the uniform policy

3We have also tried the Dependent Click Model [7] and
found it to perform worse.



Input: Parameters of the click model, au, su; set of
interleaved result lists, L

Output: Vector of the optimisation objective (10a*)
parameters µ

//Pe(r) denotes the probability of examining the rth
position
Pe(1)← 1
foreach Li ∈ L do

for r ← 1 to |Li| do
u← Li(r) // u is the document on the rth
position
//expected credit from the rth position
µi ← µi + Pe(r)δi(r)au
//probability of examining the next document
Pe(r + 1)← Pe(r) (1− ausu)

end
µi ← |µi|

end
Algorithm 2: Estimating µ with the pre-trained sDBN
click model.

πU , which is equal to Team Draft’s policy if the interleaved
result lists and the credit function of Team Draft [14] are
used. The question arises if improving sensitivity only for a
part of queries (in our case, queries with the click data avail-
able) can introduce a bias into the interleaving experiment.
The fairness criterion we use in the optimisation problem
(10b) eliminates bias only within a single query and, to the
best of our knowledge, there is no formal criteria that can
define if an inter-query bias is introduced to an interleaving
experiment. For instance, the experiment policy is optimised
in [13], but the inter-query bias is not discussed. However,
once formal criteria of the absence of the inter-query bias are
proposed, it might be possible to add them to the optimisa-
tion problem constraints. Another possibility is to perform
a long real-life study of the proposed algorithm’s agreement
with other means of the retrieval evaluation: system-based
evaluations with manual judgements, A/B testing, and other
interleaving methods.

However, in some cases the absence of the introduced bias
can be guaranteed. For instance, the inter-query bias is not
introduced if the tested change in the search engine ranker
has equal chances to improve (degrade) the ranking quality
for the frequent and long-tail queries.

5. DATASET
Interleaving is an online evaluation method. However, it is

more convenient to evaluate the sensitivity of an interleaving
method itself in an offline experimental setting, since this al-
lows us to compare several methods on the same dataset. In
this paper, we use an offline evaluation approach similar to
the approach used by Radlinski and Craswell [13]. However,
in our case two datasets are required. The first datasets rep-
resents the pre-experimental user behaviour and is used to
train the click model parameters. It is further referred to as
the user modelling dataset. The second dataset represents
the interleaving experiments that were conducted as a part
of the every-day experimentation practice at Yandex. We
refer to it as to the experimental dataset. In order to simu-
late a real-life scenario, the datasets are sampled over conse-
quent non-overlapping time periods, with the user modelling
dataset preceding the experimental dataset.

In order to collect the user modelling dataset, we apply
the following filtering: firstly, we exclude all sessions that

Table 1: Experimental datasets statistics.

Name #queries #impressions #CM sessions winner

E1 1,311 181,981 3,682,895 A
E2 524 82,008 2,771,280 B
E3 468 119,287 3,198,372 A
E4 1,502 109,596 5,691,939 A
E5 1,255 52,314 2,045,122 A
E6 279 9,175 1,100,874 B

are affected by any online experiment, as that might result
into a bias in the evaluation of the ability of the click model
to predict the parameter µ; we remove all sessions with no
documents clicked, as well as sessions with more than ten re-
sults examined since those can introduce an additional noise
to the sDBN model. In order to balance the dataset size,
the freshness of the click model parameters and the dataset
sparseness, we use the following strategy: for the top 100
most frequent queries we collect the users’ click behaviour
over a period of week; for the rest of the queries we collected
behaviour data from the eight previous weeks as well. All
queries are normalised to lowercase. The same user mod-
elling dataset is used in all experiments.

The interleaving experiments are sampled from the query
log, starting from day after the click modelling dataset time
span ended. The experimental data represents the users’
click behaviour recorded while performing six (E1...E6) Team
Draft-based interleaving experiments in April-May, 2013. In
order to reduce variance in the offline evaluation, for a par-
ticular interleaving experiment, we keep only those queries
that have every possible combination of an interleaved result
page and a credit assignment rule (under the Team Draft al-
gorithm) shown to the users at least once. Next, in order to
avoid sparsity, we consider only the top six results in each
result list. To further reduce noise, we exclude queries with
results that are examined less than two times in the user
modelling dataset. Queries with equal result lists for both
A and B are removed as non-informative under the deduped
credit assignment. The total number of user sessions used
to train the click model parameters for queries in the experi-
mental dataset is referred to as click modelling sessions (CM
sessions), We present the statistics on the whole dataset in
Table 1. In the experiments considered, the A ranking func-
tion represents the production search system, while B corre-
sponds to the experimental ranking. Winners are defined as
a result of Team Draft on the considered interleaving dataset
(bootstrap test, p ≤ 0.05).

Having introduced the dataset used in the experimental
part of our paper, we proceed to discussing the evaluation
methodology in the next section.

6. EVALUATION METHODOLOGY
Our experimental study has the following goals. The first

goal is to ensure that solving the optimisation problem (10),
stated in Section 3, indeed helps to maximise the interleav-
ing sensitivity. The second goal is to study the effectiveness
of the method proposed to estimate the parameter µ, de-
scribed in Algorithm 2. Finally, we aim to investigate how
our approach compares to the baseline interleaving method
when several credit aggregation schemes are considered.

However, before addressing these experimental goals, we
firstly discuss the metrics (Section 6.1) and statistical ap-
proaches (Section 6.2) used in our study. After that, we



discuss the baseline (Section 6.3) and the credit aggregation
schemes considered in our experiments (Section 6.4).

6.1 Metrics used
In order to measure how good the predicted values of µ

are, we use the following idea. Let us assume that we have
a predicted value of the parameter µ, µpredict and πpredict
is the corresponding optimal policy. In addition, the true
value µtrue can be directly calculated using Equation (8)
once the full experiment dataset is available. The optimal
policy corresponding to µtrue is referred to as πtrue. From
the literature we adapt the regret metric as a measure of
optimality of πpredict:

R = µtrueπtrue − µtrueπpredict (14)

The regret represents the loss in the value of objective
function (10a) due to using the estimated value µpredict in-
stead of the true value µtrue. In other words, the regret
shows how good the solution of the optimisation problem
(10) with the predicted parameters is in comparison with
the solution of the problem with ground-truth parameters.
Therefore if the parameters are predicted ideally, the cor-
responding solution has zero regret. In order to emphasise
the relative importance of queries, we weight each query by
the number of impressions and report the average values for
each experiment.

In order to measure the sensitivity of an interleaving method,
we leverage two approaches. Firstly, similar to the previous
work of Radlinski and Craswell [13], and Chapelle et al. [3],
we study the probabilities of obtaining the correct experi-
ment outcome after bootstrapping k impressions from the
existing experimental dataset. This quantity can also be
considered as the amount of user impressions an algorithm
has to observe to reach a fixed p-value. We report the re-
sults of these evaluations graphically with a pre-defined set
of k. The number of bootstrap samples is set to 10,000.

Another measure used to estimate the interleaving sensi-
tivity is z-score, as used in [3]. Denoting by c(vj) the aggre-
gated credit assigned as a result of the impression vj , we de-
fine a sample mean ∆̄ as ∆̄ = 1

N

∑
j c(vj). Furthermore, as

∆̄ is approximately normally distributed for large numbers
of impressions N , we can calculate a method’s confidence by
z-score as follows:

zc =
∆̄

σc

√
N (15)

where σc is the standard deviation of c(vj). As noted by
Chapelle et al. [3], if an interleaving algorithm has a z-score
m times higher than another, which indicates that the latter
needs m2 more data to achieve the same confidence. Thus,
the confidence of the algorithm in the experiment outcome
is directly connected to its sensitivity: an algorithm with
higher confidence is more sensitive.

6.2 Statistical methodology
As we aim to investigate how the required number of user

sessions to achieve a particular level of confidence changes
for the considered interleaving algorithms, the evaluation
must be performed on the impression level. For this reason,
the query-level methodology used by Radlinski and Craswell
[13] to measure sensitivity is not directly applicable in our
work.

Since our experiments leverage datasets that have been
obtained from the Team Draft-based experiments, the eval-
uation of other algorithms is a challenging task. Indeed, we

Input: Dataset of user impressions D, sampled under
policy PS ; policies PS and PT ; number of
bootstrap samples K, size of a sample S

Output: Probability of error P (e|S)
// calculating importance weights
for j = 1..|D| do

wj ← PT (vj)

PS(vj)

end
// normalise so w is a distribution
w ← w∑

j wj

a← 0 //agreement counter
for k = 1..K do

s← sample of S impressions from D with
replacement, according distribution w
if ∆(s) ·∆(D) > 0 then

a← a+ 1
end

end
P (e|S) = 1− a/K

Algorithm 3: Estimating the error probability P (e|S)
given a sample of size S.

need to estimate the sensitivity of an interleaving algorithm
once it is deployed, based on the data obtained from running
another algorithm. This task is related to the off-policy eval-
uation and has previously been discussed in [8, 16]. Before
discussing the method we used to approach this task, we in-
troduce the required notation. Firstly, we assume that the
available experiment dataset was generated from a source
distribution PS from one interleaving method and we want
to evaluate some statistic (e.g. sensitivity) of another inter-
leaving method which, once deployed, would generate data
under the target distribution, PT . In all our experiments
the source distribution PS corresponds to the distribution
of the result pages, generated by the Team Draft algorithm.

In order to estimate the expectation of a statistic f(v) of
the dataset D of impressions vj , the importance sampling
estimator can be used [8, 16]:

E(f) =
1

N

N∑
j=1

f(vj)
PT (vj)

PS(vj)
(16)

The core of the importance sampling estimator is to re-
weight samples obtained under the source distribution, so
that the expectation equates to the one of the target distri-
bution. Since the probability of submitting a query by the
users is independent of the interleaving algorithm deployed,
only the probability of finding a particular combination of
an interleaved results page and credit function in a query
stream depends on the interleaving algorithm. Further, we
assume that we are comparing two algorithms with the same
space of generated interleaved result lists L. Let us denote
the query submitted in impression vj as qj , and the result
list demonstrated by Lj . Then the experiment outcome ∆̄T

can be found using the following expression:

∆̄T =
1

N

N∑
j=1

c(vj)
πT,j
πS,j

(17)

where πT,j and πS,j denote the probabilities of showing re-
sult list Lj according to the policy of the evaluated (tar-
get) and available (source) algorithms4. We apply the same

4It is also required for πS,j to be positive for all Lj occurring
in the dataset, however this holds for the Team Draft policy.



Table 2: Learning the optimisation problem param-
eters regret. TD denotes Team Draft, the solution of
(10) with the parameter µ predicted by Algorithm 2
is denoted by UB. α is set to 0.5, which is selected
according to Table 3.

E1 E2 E3 E4 E5 E6

TD, ×10−2 1.80 1.23 1.20 0.88 0.48 3.36
UB, ×10−2 1.53 1.12 1.13 0.82 0.45 3.23

approach to estimate the variance of c(vj), σT . In turn,
both ∆̄T and the variance σT are used to obtain the impor-
tance sampling estimate of the algorithm’s z-score metric,
discussed in Section 6.1.

Another approach to measure an interleaving algorithm’s
sensitivity that was discussed in Section 6.1 is to study the
number of impressions required for the algorithm to define
an experiment outcome with a particular certainty. Usu-
ally, bootstrapping is used to estimate the probability of
obtaining the correct (ground-truth) experiment outcome
provided a fixed number of user impressions from the ex-
periment [13, 19]. However, the direct approach is not ap-
plicable in our case, since only the dataset generated under
the Team Draft algorithm is available. In order to obtain
these estimates, we perform a modified bootstrap sampling
by means of Algorithm 3. Similarly to the importance sam-
pling, Algorithm 3 re-weights the user impressions from the
dataset. However these weights are further used as probabil-
ities to sample from the dataset (after normalisation). This
algorithm is related to the sampling-importance-resampling
(SIR) [2] algorithm to obtain i.i.d. samples from the target
distribution PT once a dataset under source distribution PS
is provided. The algorithm is intuitive: if a point vi appears
in the dataset with probability PS(vi), after sampling with

probability proportional to PT (vi)
PS(vi)

, it will be included into

the sample with probability PT (vi).

6.3 Baseline interleaving method
We believe it is interesting to compare our approach to

the Optimised Interleaving approach proposed by Radlinski
and Craswell [13]. However this is not feasible in our exper-
imental setting. In contrast to [13], we base our evaluation
on real-life Team Draft experiments and, as a result, the
set of possible result lists L we can consider coincides with
the one of Team Draft. Unfortunately, we found that for a
considerable part of the dataset the optimisation problem
(10) is infeasible if the result lists generated by Team Draft
are combined with the credit assignment schemes from Op-
timised Interleaving.5 Similarly, the availability of the user
interaction data only for Team Draft-based result lists makes
it impossible to compare the proposed approach with Prob-
abilistic Interleaving method [9] directly. For these reasons,
we consider Team Draft as the baseline in our experiments.

6.4 Credit aggregation schemes
Our proposed approach to improve the interleaving sen-

sitivity can be used with various credit assignment and ag-
gregation schemes. Note that our approach to increase the

5For instance, A={d1, d2, ..., d9, d10} and B={d1, ..., d8,
d10, d11}. Then there are two possible interleaved result lists
with the following inverse rank credit functions [13]: δ1 =
(0, ..., 0, 1

9
, 1
10
− 1

9
) and δ2 = (0, ..., 0,− 1

9
+ 1

10
, 1
9
). With these

credit assignment functions Eq. (10b) becomes infeasible.

sensitivity of the algorithms and approaches relying on the
modification of the credit function are not mutually exclu-
sive, but, actually, complimentary to each other. In our
experimental study, we investigate the sensitivity while ap-
plying two credit aggregation schemes [3], namely: deduped
binary and deduped click. Both credit aggregation schemes
are closely related to the algorithm of building an inter-
leaved result list by Team Draft. Firstly, if the top r̄ results
for both A and B are equal, then δb(r) equates to zero for
all positions above r̄:

r̄ = maxr{∀j ≤ rA(j) = B(j)} ⇒ ∀r ≤ r̄ δb(r) = 0 (18)

For the positions below r̄, the credit for a click is assigned
to the team (A or B) the result belongs to [14].

However, these schemes differ in the way credits are ag-
gregated. In the case of the deduped binary scheme, for
each impression vj a single winner is selected and its score
is incremented:

cb(vj) = sign(CA − CB)

In contrast, in the deduped click scheme, the full credit is
contributed:

cf (vj) = CA − CB

We expect that advanced machine-learned click weighting
functions, as introduced by Yue et al. [19], can be combined
with the proposed approach and further benefit the inter-
leaving sensitivity. However, as our goal is to demonstrate
the utility of interleaving sensitivity optimisation by adjust-
ing the experiment policy, we leave advanced click weighting
functions for future work.

7. RESULTS AND DISCUSSION
To examine the quality of the prediction of the optimi-

sation problem parameters, in Table 2 we report the regret
values for the considered algorithms. It can be seen that the
optimisation with predicted values of µ indeed results into
lower regret (i.e. higher values of the non-regularised objec-
tive function (10a)), in comparison with non-optimised uni-
form solution of the problem (10), which is represented by
Team Draft. We conclude that the learning of parameters
µ by Algorithm 2 succeeds in providing reliable estimates of
the user behaviour. Thus we can expect that the interleaving
sensitivity might be improved with the proposed approach
in comparison with Team Draft.

In order to test this expectation, we perform the sensi-
tivity analysis and report the results in Table 3. We report
the relative z-scores of Team Draft and the proposed al-
gorithms for two credit aggregation schemes: deduped click
and deduped binary. The z-scores are normalised so that the
z-score of Team Draft with the deduped click credit function
equals 1 for each experiment (each row). This allows an in-
tuitive interpretation of the results: e.g. in E3 our proposed
algorithm with α = 0 with the deduped binary click aggre-
gation has a relative z-score of 2.02, thus Team Draft with
deduped click credit needs 2.022 = 4.08 times more data to
become that confident (Section 6.2). In order to get addi-
tional insights in the performance of our proposed algorithm,
we vary α in the pre-defined set α ∈ {0, 2−5, 2−4, ..., 21},
where α = 0 corresponds to the case with no regularisation,
i.e. to the objective function (10a). Team Draft corresponds
to α → +∞. The z-scores are estimated by means of im-
portance sampling, as discussed in Section 6.2.

In general, higher values of α indeed force the solution
of (10) to be similar to Team Draft: the values in the row



Table 3: Comparison of the sensitivity of interleaving optimised with historical user behaviour for different
values of the trade-off parameter α and click aggregation schemes. The sensitivity is measured by z-scores,
normalised so that in each experiment the z-score of Team Draft with the deduped click credit aggregation
scheme equals to 1. For each α and click aggregation scheme combination the median improvement over
experiments E1...E6 are reported. TD stands for Team Draft.

Exp Deduped click credit aggregation Deduped binary credit aggregation

α = 0 1/32 1/16 1/8 1/4 1/2 1 2 α = 0 1/32 1/16 1/8 1/4 1/2 1 2 TD

E1 1.01 1.02 1.00 0.96 0.96 0.93 0.95 0.97 1.13 1.12 1.13 1.12 1.08 1.05 1.07 1.09 1.11
E2 0.70 0.71 0.85 0.97 0.97 1.04 1.06 1.03 0.72 0.69 0.72 0.87 1.01 1.09 1.11 1.08 1.06
E3 1.70 1.53 1.40 1.33 1.33 1.20 1.10 1.05 2.02 1.76 1.57 1.43 1.36 1.24 1.14 1.09 1.05
E4 1.21 1.14 1.09 1.07 1.07 1.05 1.02 1.01 1.31 1.13 1.15 1.09 1.07 1.04 1.01 1.01 1.00
E5 1.58 1.42 1.27 1.15 1.15 1.06 1.02 1.01 1.64 1.60 1.46 1.30 1.18 1.08 1.03 1.01 0.99
E6 1.56 1.61 1.33 1.27 1.27 1.18 1.09 1.04 1.96 1.99 2.03 1.68 1.55 1.40 1.27 1.22 1.16

median 1.39 1.28 1.18 1.11 1.11 1.06 1.04 1.02 1.48 1.37 1.31 1.21 1.13 1.09 1.09 1.09 1.06

corresponding to α = 2 and deduped click credit aggrega-
tion scheme are close to 1. Similarly, in the case of deduped
binary credit aggregation the rows corresponding to α = 2
and to Team Draft have close values. On the contrary, low
values of α allow the optimised policy to diverge from Team
Draft, so that the interleaving becomes “risky” and relies
more on the noisy predictions of the user behaviour. As
a result, in three experiments (E3, E4, E5), the best result
is achieved with α = 0 and in two experiments (E1, E6)
the best performance is achieved with α = 1/16. More-
over, with α = 0 the maximal median improvements of 1.39
and 1.48 are achieved for the deduped click and deduped
binary aggregation schemes, respectively. These values cor-
respond to approximately 48% reduction in the number of
impressions required in comparison with Team Draft with
the same credit aggregation scheme, to achieve the same
level of confidence. However, there are downsides for behav-
ing too risky: the sensitivity in experiment E2 falls to 0.70
with α = 0 and a deduped click credit aggregation. In turn,
for values of α above 1/2, the sensitivity of the proposed al-
gorithm outperforms that of Team Draft under both credit
aggregation schemes in E2. This supports the role of α as
a parameter that trades off the level of risk (i.e. variance)
due to noisy user feedback and the level of possible improve-
ment. Moreover, these observations also suggest that with a
proper tuning of α, it is possible to achieve an appropriate
trade-off between the median improvement and the largest
descrease in the interleaving sensitivity. On analysing Table
3, we note that the median sensitivity values of the proposed
approach are above 1 for the deduped click credit aggrega-
tion and above the results of Team Draft for the deduped
binary credit aggregation, demonstrating the advantage of
our approach.

Another observation that can be made from Table 3 is
that in five out of six experiments, Team Draft with the
deduped binary click aggregation has relative scores that
are not less than one. This indicates that Team Draft with
the deduped binary credit aggregation has higher sensitivity
than with the deduped click aggregation. This fact is inline
with the results obtained by Chapelle et al. [3]. A possible
explanation is that aggregating credit on the impression level
reduces noise and thus increases the sensitivity. The same
observation holds for our proposed algorithm: for all val-
ues of α and all of the experiments considered, the deduped
binary scheme outperforms the deduped click aggregation,
except for experiment E2 and α = 1/32. This observation
also supports our decision to rely on the non-binary click

aggregation scheme while deriving the optimisation prob-
lem (10) in Section 3, since the obtained solution can still
be improved by the impression-level aggregation of credits.

A visual representation of these results is presented in Fig-
ure 1. The plots correspond to experiments from E1 to E6,
and each plot represents the probability of obtaining an in-
correct experiment outcome after considering a particular
number of impressions, as calculated by Algorithm 3. We
present results that correspond to Team Draft (i.e. α→∞)
and the solution of the optimisation problem (10) with α ∈
{0.0, 0.5}6 and the deduped credit aggregation scheme used.
We notice that the results are consistent with those in Ta-
ble 3: the proposed algorithm outperforms Team Draft in
most the of experiments, and by varying α it is possible to
control the optimisation risk: with α = 0 the proposed algo-
rithm demonstrates high sensitivity gains in E3, E4, E5, E6

but underperforms in E2 with respect to Team Draft. On
the contrary, with α = 0.5 the maximum loss is almost neg-
ligible (E1) while there are still significant improvements in
E3, E4, E5, E6 and a slight improvement in E2.

Overall, the results obtained suggest that the historical
user behaviour information can be used to improve the sen-
sitivity of the interleaving algorithms. The proposed inter-
leaving algorithm, which adjusts the interleaving policy ac-
cording to the solution of the optimisation problem (10), has
generally a higher sensitivity than Team Draft, reaching up
to a median of 48% decrease in the required number of im-
pressions to achieve the same level of confidence. Moreover,
the algorithm’s regularisation parameter α can be used to
select the appropriate variance in the sensitivity gains.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of improving the

interleaving sensitivity. We proposed a novel theoretically-
motivated approach to optimise the interleaving experiment
parameters using the historical user behaviour data rou-
tinely collected by search engines. Informally, the approach
aims to predict what interleaved result pages are likely to
contribute little to the experiment outcome and, after that,
show them to the users as rarely as possible. In order to
achieve this goal, a click model is trained on the historical
click data. In turn, this model is used to predict future user
behaviour on the interleaved result pages (that were possibly
never shown to the users before). Next, we proposed to ad-

6Since α = 0.5 is an appropriate trade-off among the values
considered in Table 3 and α = 0 is an interesting case of the
non-regularised version of the optimisation problem (10).



Figure 1: Comparison of the interleaving methods sensitivity. TD denotes Team Draft, UB-0.0 and UB-0.5
correspond to interleaving optimised with respect to historical user behaviour with α equal to 0.0 and 0.5,
respectively. The deduped binary credit aggregation scheme is considered.
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just the probabilities of showing interleaved result pages so
that a predicted upper bound on the experiment outcome is
maximised. Further, since the predicted user behaviour can
be noisy, we introduced a regularisation trade-off parameter
which can be used to adjust the level of risk.

In order to test the proposed approach empirically, we
performed an offline empirical study, which leverages data
from the Team Draft interleaving experiments previously
performed by a commercial search engine. In our study, we
used the data obtained over six interleaving experiments,
representing 555K user impressions in total. We investigated
the sensitivity of the proposed approach with the previously
proposed deduped click and deduped binary credit aggrega-
tion schemes. Our results suggest that with an appropriate
tuning of the trade-off parameter, the proposed approach
outperforms the Team Draft algorithm in ensuring the cor-
rect experiment outcome with up to the median of 48% less
impressions.

An interesting direction for future work is to study a
per-query strategy for selecting the risk parameter α. In-
deed, the optimisation can be performed more aggressively
for queries with a sufficient amount of historical click data
available. Finally, we believe it is promising to further inves-
tigate other combinations of the credit assignment schemes
and the proposed approach.
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