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Abstract

In this paper, we propose a query-based pre-retrieval approach to the model selection problem,
which automatically selects the best-performing retrieval model before the retrieval process
takes place. In this approach, the queries are clustered according to their statistics and the best-
performing retrieval model is associated to each cluster. For a given new query, we assign the
closest cluster to the query, and then we apply the model associated to the cluster. We evaluate
the model selection approach on the disk1&2 of the TREC collections. The results show that
our model selection approach achieves stable performance, which could outperform the use of
the optimal retrieval model indifferently for each query. The results also show that, interestingly,
a retrieval model provides consistent performance for queries belonging to the same cluster.

1 Introduction

An information retrieval (IR) system receives a query from the user and returns the suppos-
edly relevant documents. The set of relevant documents are determined by a proper retrieval
model. Generally, the documents are ranked by their relevance scores, which are given by a
weighting scheme [vR79]. Therefore, the retrieval model is usually heavily correlated with the
notion of the weighting scheme. As a consequence, the effectiveness of a weighting scheme
to discriminate the informative terms from the common terms, in a given document, has a
strong impact on the quality of the retrieved set of documents.

In the recent decades, many retrieval models for IR have been developed from various
perspectives (e.g. the models based on the tf ·idf weighting scheme [Sal71], the BM25 formula
[RWB98] and the language modelling approach [PC98,ZL02]). For a given collection and a
given query, it is an interesting and challenging problem to automatically select the best
retrieval model, which would provide the best retrieval performance. This problem is referred
to as the model selection problem.

The key issue of the model selection problem is to assess the retrieval models. If we could
accurately estimate the quality of each candidate retrieval model, then we can select the re-
trieval model(s) accordingly. Recently, there have been some efforts to tackle the assessment of
the retrieval models. In [JFH01], Jin et al. proposed an automatic retrieval model evaluation



method by computing the eigenvalues of the document-document matrix. In their work, each
document is represented by a vector of terms, where each term weight is determined using
a specific weighting model. Then, for a given collection, the models are evaluated according
to the eigenvalues of the eigenvectors of the document-document matrix. In Manmatha et
al’s work [MRF01], the quality of a retrieval model is given by the probability of relevance.
They combine the outputs of different retrieval models by modelling the score (i.e. the rele-
vance score of the documents) distributions. The score distribution is modelled as a normal
distribution for the relevant documents and an exponential distribution for the non-relevant
documents. For a query where there is no relevance information available, the posterior prob-
ability p(Rel|score), the probability of relevance of the document given the score of a retrieval
model, is approximated by a Bayesian formula. Moreover, in a distributed information re-
trieval environment, Luo & Callan [LC02] assess the retrieval models by merging the results
of different retrieval models using a regression model.

The three approaches described above are based on the analysis of the relevance scores
given by the retrieval models. Therefore, using these approaches, the system cannot select
the optimal model prior to the retrieval process.

On the contrary, our approach to the model selection is a pre-retrieval mechanism. For
a given query, it automatically selects a retrieval model without the need to wait for the
system’s relevance scores.

Our work for the model selection problem is based on Amati & van Rijsbergen’s probabilis-
tic modular framework [Ama03,AvR02a]. The framework deploys more than 50 Divergence
From Randomness (DFR) models for term weighting, including the widely tested I(n exp)C2
and PL2 [ACR02,POAvR03] retrieval models. However, for a given retrieval task, the frame-
work does not have a strategy to single out a model that would provide the best performance.
Tables 1 and 2 list the mean average precision (MAP) obtained by different models on the
TREC-7, 8 ad-hoc tasks1 respectively. Here we just list the results given by the most stable
and effective models in Amati & van Rijsbergen’s framework. We can see that even on the
same collection, the optimal model for each task could be different. For both tasks, the best
model achieves approximately 5% higher MAP than the poorest one. If we empirically apply
the optimal model on the TREC-7 ad-hoc task, i.e. I(n exp)C2, on TREC-8 ad-hoc task, we
will not achieve the optimal performance on this task (see Table 2). Indeed, it is usually not
efficient to use a unique retrieval model across different retrieval tasks [POAvR03].

The purpose of this paper is to propose a query-based pre-retrieval approach to the
selection of the most appropriate retrieval model. For a given query and a given collection,
we aim to automatically select the best-performing retrieval model.

The remainder of this paper is organised as follows. Section 2 describes in details the
proposed query-based pre-retrieval model selection approach. Section 3 introduces the ex-
perimental setting we use to evaluate the proposed approach. In Section 4, the evaluation
results are listed and analysed. Finally, Section 5 concludes our work and provides directions
for future research.

1 The two retrieval tasks are based on the same TREC collection. Related information about the TREC
collections can be found on the following web page: http://trec.nist.gov/data/intro eng.html



Table 1. The mean average precision (MAP) on the TREC-7 ad-hoc task using the different
retrieval models.

Model MAP Model MAP
I(F)B2 0.1985 PL2 0.1894

I(n exp)L2 0.1937 I(n exp)C2 0.2001
PB2 0.1906 BB2 0.1985

I(n exp)B2 0.1986 I(n)B2 0.1987
I(n)L2 0.1958 BL2 0.1932
I(F)L2 0.1933

Table 2. The mean average precision (MAP) on the TREC-8 ad-hoc task using different
retrieval models.

Model MAP Model MAP
I(F)B2 0.2623 PL2 0.2571

I(n exp)L2 0.2611 I(n exp)C2 0.2637
PB2 0.2526 BB2 0.2632

I(n exp)B2 0.2630 I(n)B2 0.2649
I(n)L2 0.2626 BL2 0.2608
I(F)L2 0.2607

2 Query-based Model Selection

As stressed in the previous section, the current approaches assess the retrieval models, once
the different involved models are compared based on the analysis of their relevance scores.
This requires running the candidate retrieval models on each query before detecting the most
appropriate one(s). As a consequence, such approaches are not very practical, especially in
an interactive retrieval setting.

In this paper, we propose a query-based pre-retrieval model selection mechanism that
assesses/selects the retrieval model(s) without knowing the set of retrieved documents, nor
their associated scores.

To introduce our model selection approach in details, we start by motivating the approach
in Section 2.1 and describing the involved query clustering process in Section 2.2. In Section
2.3, we provide a summary of the proposed model selection methodology.

2.1 Motivation: Outputs vs Intrinsic Features

The underlying idea of our approach is that the choice of the optimal retrieval model depends
on the statistical characteristics of the query rather than on its output. Therefore, we assume
that the best retrieval performance for queries having similar statistical features, would be
achieved by the same retrieval model. In other words, the statistical features of a query could
constitute a good indication for the model selection decision mechanism, and we might be
able to discriminate various types of queries according to their statistical features.



If the queries could be categorised into groups, where the best-performing retrieval model
could be identified for each group, then, selecting the best-retrieval model for a new query
would mean identifying the closest group that shares its statistical features. This idea assumes
that a retrieval model provides consistent performance for queries in the same cluster. In the
experimental section of this paper, we will show that this assumption holds (see Section 4).

Therefore, our approach involves a training process where the queries are clustered ac-
cording to their statistical characteristics, and the best retrieval model for each cluster of
queries is obtained by taking previous relevance judgements into consideration. After the
training process, for a given new query, we assign a cluster to the query according to its
statistics, and then trigger the best-performing model associated to the assigned cluster.

A possible approach to clustering the queries is to take the users’ feedback into account
and cluster together the queries for which the users have visited similar documents [WNZ02].
However, since the retrieved documents are only known after the retrieval process, this ap-
proach is not appropriate for our pre-retrieval model selection mechanism.

Therefore, in the following section, we propose a query clustering method that is inde-
pendent of the retrieval procedure. We provide the query features that could be used in the
clustering process, and motivate their use.

2.2 Query Clustering

In order to have a query clustering method that is independent of the use of the users’
feedback and/or the relevance scores, we need to find those features that could describe the
natural characteristics of a query, and that are not affected by the retrieval process. Then, a
query clustering process based on these features will be proposed.

For this purpose, we propose to study the statistics of the queries. For each query, we
construct a feature vector, and then cluster the queries according to the similarity of each
vector pair. The underlying problem of this approach is the right choice of the features
required to faithfully represent a query.

Following the works that have been done in the language modelling approach to informa-
tion retrieval [ZL01,CTZC02], and the previous experiments with various retrieval models and
length normalisation approaches in Amati & van Rijsbergen’s framework [Ama03,HO03a], we
propose the following three features, on which the queries are clustered:

– The query length
According to Zhai & Lafferty’s work [ZL01], in the language modelling approach, the
query length has a strong effect on the smoothing methods. In our previous work, we
also found that the query length heavily affects the length normalisation methods of the
probabilistic models [HO03a].
For example, the optimal setting for the length normalisation 2 in Amati & van Rijs-
bergen’s probabilistic framework is query-dependent [AvR02a]. Indeed, the empirically
obtained setting of its parameter c is c = 7 for short queries and c = 1 for long queries,
suggesting that the optimal setting depends on the query length. Therefore, the query



length could be an important characteristic of the queries. In this paper, we define the
query length ql as the number of non-stop words in the query.

– The relative informative amount carried in each query term
In general, each term is associated with an inverse document frequency (idf(t)) de-
scribing the informative amount that a term t carries. The idf(t) factor is a decreasing
function of the number of the documents containing the given query term t. It is widely
used in IR (e.g. the tf · idf formula in the vector space model [Sal71]). In this work, we
propose to use the distribution of the informative amount in the query terms as a factor
characterising a query.
In our approach, we use the quotient of the minimum idf among the query terms divided
by the maximum idf among the query terms as an important statistical factor (γ)
intrinsic to a given query:

γ =
log(nt,max/N)
log(nt,min/N)

where nt is the number of documents containing a particular query term t. nt,max and
nt,min are the maximum and minimum nt among the query terms respectively. N is the
number of documents in the whole collection.
For example, assume that a query is “information and retrieval”, and the idf of the terms
are ranked as idf(retrieval) > idf(information) > idf(and). Then, the difference of
the informative amount among the terms is extracted as

γ =
idf(and)

idf(retrieval)

Other factors, including the mean, the standard deviation or the variance of the infor-
mative amount in the query terms etc., could be used to model the difference of the
informative amount in the query terms. However, for this initial study, we believe that
the proposed definition is a very good starting point.

– The clarity/ambiguity of a query
When a user is searching on an IR system, the scope of his/her query is an important
factor in the retrieval process. For example, a query like “information retrieval glasgow
university” may require information about the Glasgow IR group, including staffs, stu-
dents, publications and so on. Whilst for a query like “homepage of glasgow information
retrieval group”, the query seems to specifically require the web site of the Glasgow IR
group. Therefore, we consider that the latter query is of a higher clarity than the former
one. According to the work by Cronen-Townsend et al. [CTZC02], the clarity (or on
the contrary, the ambiguity) is an intrinsic feature of a query, which has an important
impact on the system performance. Therefore, it could be a factor in our query cluster-
ing process. Cronen-Townsend et al. proposed the clarity score of a query to measure
the coherence of the language usage in documents, whose models are likely to generate
the query. In their definition, the clarity of a query is the sum of the Kullback-Leibler
divergence between the probability of generating each term in the vocabulary from the
query and from the whole collection.
Cronen-Townsend et al.’s definition comes from the language modelling approach to
IR. A more general indication of the clarity of a query is the size of the document set



containing (at least one of) the query terms. As stressed in [POAvR03], the size of this
document set is an important property of the query.
In this work, and following [POAvR03], we use the factor

ω = − log(nQ/N)
log N

to represent the clarity of a query, or its scope; where nQ is the number of documents
containing (at least one of) the query terms.
When nQ is small, we will obtain a large ω value, which implies that the query is very
specific.

Taking the above three features into account, each query will be represented by the feature
vector qf given as follows:

qf = (ρ · ql, γ, ω)

where

– ρ is a parameter. We experimentally set it to 0.2;
– ql is the query length;
– ω can be seen as the normalised idf factor for the whole query.

The three proposed features are not exhaustive. However, we believe that they should be
able to faithfully characterise a query.

Finally, following the motivation of our approach described in Section 2.1, the feature
vectors have to be clustered. In this work, we adopt the CURE algorithm [GRS98] to cluster
the feature vectors in the above three-dimensional space. In the CURE algorithm, initially,
each vector is an independent cluster. The similarity between two clusters is measured by
the cosine similarity of the two closest vectors (having the highest cosine similarity), where
the two vectors come from each cluster respectively. If we have n vectors to be processed,
we start with n clusters. Then, we merge the closest pair of clusters (according to the cosine
similarity measure) as a single cluster. The merging process is repeated until it results in k
clusters. Here the number k of clusters is the halting criterion of the algorithm.

2.3 The Model Selection Mechanism

Having introduced a pre-retrieval query clustering method in the previous section, our model
selection mechanism, as motivated in Section 2.1, can be summarised as follows:

– We cluster a set of training queries according to their intrinsic features.
– For each cluster, we select the best-performing model in terms of the precision/recall

measures.



– Then for a new query, we assign the closest cluster to it and trigger the best-performing
model associated to the assigned cluster.

Note that the query clustering procedure is done at the training stage. For a new query,
we simply assign a cluster to the query without the need to wait for the relevance scores.
Therefore, our approach is quite practical and efficient in terms of computational complexity.

In the following sections, we show how our model selection approach has been evaluated.
We describe our experimental setting in Section 3, and provide the evaluation results and the
related analysis in Section 4.

3 Experimental Setup

The purpose of our experiments is not only to evaluate our model selection approach, but also
to check whether a retrieval model provides consistent performance for queries belonging to
the same cluster. The latter will allow us to prove the underlying assumption of our approach
(see Section 2.1). Thus, our experiments include two steps, i.e. the training process required by
the model selection mechanism, and the evaluation part, which evaluates the model selection
approach and verifies its underlying assumption.

In the experiments, our model selection mechanism involves 11 retrieval models developed
within Amati & van Rijsbergen’s Divergence From Randomness (DFR) probabilistic modular
framework [AvR02a]. The models are listed in Table 3, where

Table 3. The retrieval models involved in our experiments.

Model Formula
BB2 w(t, d) = F+1

nt·(tfn+1)(− log2(N − 1)− log2(e)+
f(N + F − 1, N + F − tfn− 2)− f(F, F − tfn))

BL2 w(t, d) = 1
tfn+1(− log2(N − 1)− log2(e)+
f(N + F − 1, N + F − tfn− 2)− f(F, F − tfn))

PB2 w(t, d) = F+1
nt·(tfn+1)(tfn · log2

tfn
λ + (λ + 1

12·tfn − tfn) · log2 e+
0.5 · log2(2π · tfn))

PL2 w(t, d) = 1
tfn+1(tfn · log2

tfn
λ + (λ + 1

12·tfn − tfn) · log2 e+
0.5 · log2(2π · tfn))

I(n)B2 w(t, d) = F+1
nt·(tfn+1)(tfn · log2

N+1
nt+0.5)

I(n)L2 w(t, d) = 1
tfn+1(tfn · log2

N+1
nt+0.5)

I(F)B2 w(t, d) = F+1
nt·(tfn+1)(tfn · log2

N+1
F+0.5)

I(F)L2 w(t, d) = 1
tfn+1(tfn · log2

N+1
F+0.5)

I(n exp)B2 w(t, d) = F+1
nt·(tfn+1)(tfn · log2

N+1
ne+0.5)

I(n exp)L2 w(t, d) = 1
tfn+1(tfn · log2

N+1
ne+0.5)

I(n exp)C2 w(t, d) = F+1
nt·(tfne+1)(tfne · log2

N+1
ne+0.5)



– w(t, d) is the within-document term weight of the term t in the document d.
– tf is the within-document frequency of the term t in the document d.
– F is the term frequency of the term t in the whole collection.
– N is the number of documents in the collection.
– nt is the document frequency of the term t.
– ne is given by:

N · (1− (1− nt

N
)F )

– λ is given by F
N and F ¿ N .

– The relation f is given by the Stirling formula:

f(n,m) = (m + 0.5) · log2(
n

m
) + (n−m) · log2 n

– tfn is the normalised term frequency. It is given by the normalisation 2 [AvR02a]:

tfn = tf · log2(1 + c · avg l

l
) (1)

where c is a parameter. l and avg l are the document length of the document d and
the average document length in the collection respectively.

– tfne is also the normalised term frequency. It is given by the modified version of the
normalisation 2 [AvR02b]:

tfne = tf · loge(1 + c · avg l

l
)

An effective and stable document length normalisation method, i.e. the normalisation 2
(see Equation (1)), is applied in these models. The details of these models and the normali-
sation 2, can be found in [Ama03,AvR02a].

The only parameter c of the length normalisation method is automatically estimated
by our tuning approach, which measures the normalisation effect on the term frequency
distribution with respect to the document length distribution [HO03a]. The approach assumes
a constant optimal normalisation effect with respect to the change of the within document
frequency of the query terms. It assigns the parameter value such that it gives this constant.
This tuning approach is applied in all the experiments of this paper.

For our experiments, we use the disk1&2 of the TREC collections as the test collection.
This is due to the fact that there are more queries available on this collection (i.e. queries of
the TREC-1, 2, and 3 ad-hoc tasks), which allows us to have a larger training query set and
a better analysis. Thus, we use 100 queries, i.e. the queries of the TREC1, 2 ad-hoc tasks, as
the training query set, and we use 50 queries, i.e. the queries of the TREC-3 ad-hoc task, as
the evaluation query set.

Each query consists of 3 fields: title, description and narrative. In all our experiments, we
use only the title field. Also, in our experiments, both documents and queries are stemmed,



tokens from a standard stop-words list are removed and no query expansion mechanism is
applied.

We start by extracting the statistical features of each training query as described in the
previous section, such that a feature vector is constructed for each query. The CURE algo-
rithm is then applied in order to group the feature vectors into clusters. In the experiments,
we test the clustering process for different threshold settings from k = 2 to k = 10.

Next, in order to find the optimal retrieval model for each cluster, we run experiments
on the training query set to obtain the average precision for each query using the 11 chosen
retrieval models. For each cluster of queries, we consider the model providing the highest mean
average precision over the cluster as the best-performing model associated to the cluster.

Then, we test our model selection mechanism on the evaluation query set. For each query
in the evaluation query set, we assign the closest cluster to it and run the retrieval process
using the best-performing model associated to the cluster.

Thus, if the clustering process results in k clusters {c1, . . . , ck}, for each cluster ci, we
denote the queries in the training set and in the evaluation set belonging to ci as QT,ci and
QE,ci respectively. We also denote the best-performing model on QT,ci as MT,best,ci

. If we find
that in most clusters, the model MT,best,ci

achieves also the best performance on QE,ci , we
can conclude that our assumption (see Section 2.1) that a retrieval model provides consistent
performance for queries belonging to the same cluster holds.

Moreover, on the evaluation query set, we compare the performance of our model selection
approach with the use of a unique optimal model indifferently for each query. Our baseline
is the model that provides the highest mean average precision on the training query set.
Therefore, the baseline is the strongest model obtained empirically on a large set of queries,
i.e. the training query set, which could be seen as a robust baseline.

4 Experimental Results

As introduced in the above section, our experiments start with a training process, in which
the training queries are clustered and the average precision on each training query is obtained
by using different retrieval models.

Tables 4 lists the MAP (mean average precision) on the training query set using each
single retrieval model uniformly for all the queries. PL2 is the best-performing model among
the 11 chosen models. Therefore, it is considered as the baseline for the model selection
mechanism. Moreover, on the training query set, the best model achieves a clearly higher
MAP (8.50%) than the poorest one.

As shown in Table 5, the query clustering results vary with the threshold value k (k = 2
to k = 10). When the threshold is getting larger, the number of queries in each cluster is
getting smaller, since the vectors are distributed in more groups. For all the applied threshold
settings, the best-performing models on the clusters generated by the training process include
four models, i.e. PL2, I(n exp)C2 ,PB2 and I(n)B2. Note that as shown in Table 4, according



Table 4. The mean average precision (MAP ) achieved by each single candidate model for
the training query set T . From these results, we select PL2 as our baseline.

Model MAPT Model MAPT

PL2 0.2120 I(n exp)C2 0.2111
PB2 0.2084 I(F)B2 0.2061

I(n exp)B2 0.2053 BB2 0.2037
I(n)B2 0.2022 I(n)L2 0.1991
I(F)L2 0.1970 I(n exp)L2 0.1967
BL2 0.1954

to their performance, the first three models are top ranked, while I(n)B2 is the 7th most
efficient candidate model.

To check our assumption in Section 2.1, we run a set of experiments on the evaluation
query set using the 11 chosen retrieval models and obtain the average precision for each
query. For the queries in a cluster ci, we compare MT,best,ci

, the best-performing model for
the training query set, to ME,best,ci

, the best-performing model for the evaluation query set
(see Table 6). If we can find that the two models are the same, then our assumption in
Section 2.1 holds. For space reason2, we just list the data obtained by the thresholds k = 3,
k = 5 and k = 7. As shown in Table 6, for example, when the threshold setting is k = 7,
the clustering process generates 7 clusters of queries. Out of the 7 clusters, for 4 clusters
(i.e. the clusters 7.1, 7.5, 7.6 and 7.7), MT,best,ci

and ME,best,ci
are the same, which means

that MT,best,ci
achieves also the best performance among the 11 models on QE,ci , the queries

belonging to ci in the evaluation query set. For the cluster 7.2, although MT,best,ci
(i.e. PL2)

and ME,best,ci
(i.e. I(n exp)C2) are not exactly the same, MT,best,ci

provides good performance
as well. The difference between the selected model PL2 and the optimal model I(n exp)C2 is
not significant in terms of performance for this cluster. The result of the cluster 7.4 is similar
to the cluster 7.2. However, for the cluster 7.3, ME,best,ci

(i.e. PB2) is clearly better than
MT,best,ci

(i.e. PL2), which is contradictory to our assumption in Section 2.1. Looking into
this cluster, Table 5 shows that in the evaluation query set, there is only one query belonging
to cluster 7.3. In this case, a single query may not provide enough evidence for our analysis.
Indeed, the selected model MT,best,ci

achieves effective performance in almost all the cases for
the three listed threshold settings (see Table 6). Therefore, our assumption that a retrieval
model provides consistent performance for queries belonging to the same cluster holds.

Finally, we evaluate the proposed model selection mechanism on the evaluation query set.
The results on the whole evaluation query set obtained by our model selection mechanism
and by using the 11 chosen retrieval models are listed in Table 7. According to the evalua-
tion results, using proper threshold settings, the model selection mechanism outperforms the
strongest baseline on the evaluation query set. The best threshold setting is k = 7. Also, it is
encouraging to see that for all the threshold settings, the model selection mechanism achieves
very stable performance. Moreover, setting the threshold to k = 6, k = 7, k = 9 and k = 10,
our model selection mechanism outperforms the use of any single model (see Table 7).

2 We have also checked the data for other threshold settings, the results are quite compatible with those of
the listed three threshold settings.



Table 5. Statistics of the model selection mechanism using different threshold settings.
MT,best,ci

denotes the associated best-performing model of a cluster. #T and #E are the
numbers of queries belonging to the cluster ci in the training set T and the evaluation query
set E respectively. For each threshold setting, we associate an ID to each cluster.

Threshold ID MT,best,ci
(#T, #E) ID MT,best,ci

(#T, #E) ID MT,best,ci
(#T, #E)

k = 2 2.1 I(n exp)C2 (32, 25) 2.2 PL2 (68, 25)
k = 3 3.1 I(n exp)C2 (32, 25) 3.2 PL2 (48, 19) 3.3 I(n)B2 (20, 6)
k = 4 4.1 I(n exp)C2 (32, 25) 4.2 PL2 (38, 14) 4.3 I(n)B2 (20, 6)

4.4 I(n exp)C2 (10, 5)
k = 5 5.1 I(n exp)C2 (32, 25) 5.2 PL2 (13, 9) 5.3 I(n)B2 (20, 6)

5.4 I(n exp)C2 (10, 5) 5.5 PL2 (25, 5)
k = 6 6.1 I(n exp)C2 (5, 1) 6.2 PL2 (13, 9) 6.3 I(n)B2 (20, 6)

6.4 I(n exp)C2 (10, 5) 6.5 PL2 (25, 5) 6.6 PL2 (27, 24)
k = 7 7.1 I(n exp)C2 (5, 1) 7.2 PL2 (13, 9) 7.3 PL2 (7, 1)

7.4 I(n exp)C2 (10, 5) 7.5 PL2 (25, 5) 7.6 PL2 (27, 24)
7.7 PB2 (13, 5)

k = 8 8.1 I(n exp)C2 (7, 8) 8.2 PL2 (7, 1) 8.3 PL2 (13, 9)
8.4 I(n exp)C2 (5, 1) 8.5 PL2 (25, 5) 8.6 PL2 (20, 16)
8.7 PB2 (13, 5) 8.8 I(n exp)C2 (10, 5)

k = 9 9.1 I(n exp)C2 (7, 8) 9.2 PB2 (8, 8) 9.3 PL2 (7, 1)
9.4 I(n exp)C2 (5, 1) 9.5 PL2 (13, 9) 9.6 PL2 (25, 5)
9.7 PB2 (13, 5) 9.8 I(n exp)C2 (10, 5) 9.9 PL2 (12, 8)

k = 10 10.1 I(n exp)C2 (7, 8) 10.2 PB2 (8, 8) 10.3 PL2 (4, 4)
10.4 I(n exp)C2 (8, 4) 10.5 PL2 (7, 1) 10.6 I(n exp)C2 (5, 1)
10.7 PL2 (13, 9) 10.8 PB2 (13, 5) 10.9 PL2 (25, 5)
10.10 I(n exp)C2 (10, 5)

5 Conclusions and future work

In this paper, we have proposed a methodology selecting the optimal retrieval model for
a given query prior to the retrieval process. The evaluation results show that for various
threshold settings, our model selection mechanism provides stable performance that is clearly
as good as the results given by the strongest baseline, which is the best-performing retrieval
model on a large training query set. Moreover, if appropriate threshold settings are used, the
model selection mechanism outperforms the baseline.

We have also shown that, interestingly, a retrieval model provides consistent performance
for queries belonging to the same cluster. Therefore, queries belonging to the same cluster
favours some particular retrieval models.

We have obtained similar results for the disk4&5 (No CR) of the TREC collections, i.e.
the collection of the TREC-7, 8 ad-hoc tasks [HO03b]. To avoid redundancy, in this paper,
we just provide the results for the disk1&2 of the TREC collections.



Table 6. The performance of MT,best,ci
and ME,best,ci

on the clusters for the evaluation query
set. For each cluster ci, MT,best,ci

and ME,best,ci
are the best-performing model for ci in the

training query set T and the evaluation query set E respectively. ME,best,ci
is the mean average

precision (MAP ) on the cluster ci. For each threshold setting, we associate an ID to each
cluster. ∆ is the gap between the MAPQE,ci

given by MT,best,ci
and ME,best,ci

respectively.

ID MT,best,ci
MAPQE,ci

ME,best,ci
MAPQE,ci

∆(%)
k = 3

3.1 I(n exp)C2 0.2219 PB2 0.2239 0.89
3.2 PL2 0.3086 PL2 0.3086 0
3.3 I(n)B2 0.3928 PB2 0.4029 2.51

k = 5
5.1 I(n exp)C2 0.2219 PB2 0.2239 0.89
5.2 PL2 0.3048 I(n exp)C2 0.3065 0.55
5.3 I(n)B2 0.3928 PB2 0.4029 2.51
5.4 I(n exp)C2 0.4583 I(F)B2 0.4627 0.95
5.5 PL2 0.1668 PL2 0.1668 0

k = 7
7.1 I(n exp)C2 0.1505 I(n exp)C2 0.1505 0
7.2 PL2 0.3048 I(n exp)C2 0.3065 0.55
7.3 PL2 0.1968 PB2 0.2203 10.67
7.4 I(n exp)C2 0.4583 I(F)B2 0.4627 0.95
7.5 PL2 0.1668 PL2 0.1668 0
7.6 PL2 0.2286 PL2 0.2286 0
7.7 PB2 0.4394 PB2 0.4394 0

We have provided a particular implementation of the proposed model selection approach.
The involved components, including the features characterising a query, the definition of
each feature, and the clustering algorithm, can be replaced with other possible candidates.
Therefore, the performance of our approach could be improved if better replacements for the
involved components are provided.

For example, in this paper, the queries are clustered in a three-dimensional space, where
each vector consists of three features describing the statistics of a query. As stressed in Section
2.2, the three proposed features are not exhaustive. Moreover, the definition of each feature
has various candidates. In the future, we will investigate other possible query features, and
study possible alternative definitions for the proposed ones.

Finally, the study in this paper involved only 11 models of Amati & van Rijsbergen’s
DFR framework. In the future, we will also extend the approach to other possible choices,
including other retrieval models in Amati & van Rijsbergen’s DFR framework, and some of
the recently proposed language models.



Table 7. The mean average precision obtained by using the model selection mechanism and
using a fixed retrieval model indifferently for the evaluation query set. Selection(k) denotes
the model selection mechanism by setting the threshold to k. The baseline is the optimal
retrieval model for the training query set.

Model Mean average precision
Different Retrieval Models

PL2 (baseline) 0.2766
I(n exp)C2 0.2747

PB2 0.2699
IFB2 0.2683

I(n exp)B2 0.2681
BB2 0.2665
InB2 0.2664
InL2 0.2589

I(n exp)L2 0.2554
IFL2 0.2552
BL2 0.2546

Model Selection
Selection(k = 2) 0.2757
Selection(k = 3) 0.2753
Selection(k = 4) 0.2755
Selection(k = 5) 0.2755
Selection(k = 6) 0.2773
Selection(k = 7) 0.2780
Selection(k = 8) 0.2762
Selection(k = 9) 0.2773
Selection(k = 10) 0.2767
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