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Abstract

With our participation in TREC2004, we test Terrier, a modular and scalafdemation Retrieval frame-
work, in three tracks. For the mixed query task of the Web track, we gnapitecision mechanism for selecting
appropriate retrieval approaches on a per-query basis. For thstrwbck, in order to cope with the poorly-
performing queries, we use two pre-retrieval performance pragdietod a weighting function recommender
mechanism. We also test a new training approach for the automatic tunihg tefrm frequency normalisation
parameters. In the Terabyte track, we employ a distributed versionroéiTand test the effectiveness of tech-
nigues, such as using the anchor text, pseudo query expansionectthgedifferent weighting models for each
query.

1 Introduction

With our participation in TREC2004, we test our InformatiBetrieval (IR) framework, Terrier, in a variety
of different settings. Terrier is a modular and scalablenfrevork, for the rapid development of large-scale IR
applications. It provides indexing and retrieval functibities, as well as a number of parameter-free weighting
models, based on the Divergence From Randomness (DFRMi@f2]. Terrier stands for TErabyte RetrlEveR,
and further information can be found at http://ir.dcs atauk/terrier.

We have submitted official runs to three tracks of TREC20@4 tike Web track, we test the selective applica-
tion of different retrieval approaches on a per-query bdsithe Robust track, we employ two novel pre-retrieval
performance predictors in a weighting function recommemaechanism, in order to use the optimal weighting
functions/models for the poorly-performing queries. Weoalefine the automatic tuning of the term frequency
normalisation parameters, by creating samples of quénistead of using relevance information. In both the Web
and Robust tracks, we use a centralised version of TerrggrthHe Terabyte track, we use Terrier in a distributed
setting, in order to handle the test collection .GOV2, aralate retrieval techniques, which have been effective
in the context of previous adhoc and Web retrieval TREC tasks

The remainder of the paper is organised as follows. Sect@mnfains a description of the Terrier framework.
In Section 3, we describe our approach for the mixed quekydathe Web track. Section 4 presents our exper-
iments for the Robust track. In Section 5, we describe ouigiaation in the Terabyte track, and we close with
some concluding remarks in Section 6.



2 Terrier Information Retrieval Framewor k

Terrier offers a number of DFR-based models, classical endnt models for document weighting, as well as
DFR-based and classical term weighting models for querpmsion. More specifically, the relevance score of a
document d for a particular query Q is given hy:

score(d, Q) = Zw(t, d) (1)

te@

wherew(t, d) is the weight of the document for a query termt. In Table 1, we provide the formulas for the
different modelaw(t, d) we have used in our experiments for TREC2004.

[ Model Formula |

BB2 w(t,d) = § g (—1082(N —1) —logy(e) + (N + F = 1N + F —tfn —2) — [(F,F — tfn))
BL2 w(t,d) = gy (—loga(N — 1) —logy(e) + f(N + F —1,N + F —tfn —2) — f(F,F — tfn))
PB2 w(t,d) = W(tfn log, L% + (A + ﬁfn —tfn)-logye+0.5-log,(2m - tfn))

PL2 w(t,d) = tfn+1 (tfn -log, & tn 4 ()\ + ﬁ —tfn)-logye+0.5-log, (27 - tfn))

I(n)B2 w(t,d) = W%(tfn log2 N]:f:()lf,)

I(ML2  w(t,d) = g (Lfn - logy 55%)

I(F)B2  w(t,d) = %(tfn -log, #5%)

I(F)L2  w(t,d) = Wﬁ(tfn -log, 255

I(ne)B2  w(t,d) = W%(tfn logy - _:'0%5)

I(ne)L2  w(t,d) = tan (tfn - log, 7LN++015)

I(ne)C2  w(t,d) = W‘%(tfne log, nNIols)

Table 1: Terrier DFR-based document weighting models

The notation from Table 1 is explained below:

e tf is the within-document frequency of ternin documentd.
e F'is the term frequency of termin the whole collection.

e N is the number of documents in the collection.

N, is the document frequency of term

n. is given byN - (1 — (1 — 3£)F).

\is given by£ andF < N.

The relationf is given by the Stirling formula:

F(n,m) = (m +0.5) - logy(~-) + (n = m) - logy m @)

tfn is the normalised term frequency. It is given by tlegmalisation 2

avg-l
l

wherec is a parameterl andavg_l are the document length of the documérand the average document
length in the collection respectively.

tfn=1tf-logy(1+c- ) )



e tfn. is also the normalised term frequency. It is given by the rinediiversion of the normalisation 2:

tfne =tf -log.(1+c-

avgl

)

(4)

The only free parameter of the DFR framework is the term feaxgy normalisation parametefrom Eqgs. 3
and 4. The tuning of such parameters is a crucial issue imrirdtion retrieval, because it has an important impact
on the retrieval performance [5, 2]. A classical tuning noetls the pivoted normalisation [16], which fits the

document length distribution to the length distributionrelevant documents. However, since document length

distribution is collection-dependent, the pivoted notisatlon suffers from the collection-dependency problem.
Indeed, the optimal parameter settings of diverse docupwdleictions are different [5].

In our experiments with Terrier, the parametds automatically tuned, according to a method proposed by

He and Ounis [10]. This method assumes a constant optimalaisation effect with respect to the document
length distribution of the collection, and it assigns theapaeter value such that it gives this constant. Thus, it is
a collection-independent approach. The proposed methd®juses relevance information for training.

Terrier provides various DFR-based models for query expandased on extracting the most informative
terms from a set of top-ranked documents. In Table 2, we ptdéke term weighting models(¢) used in our

experiments for TREC2004.

[ Model  Formula
KL w(t) = Py - log, %
Cs w(t) =lp - D+ 0.5 logy(m - L - 7o)
Bol w(t) = tfz log, Hfj" +log,(1 4 Pp)
Bo2 w(t) = tfs - log, - (14 Py)

Table 2: Terrier DFR-based term weighting models.

The notation from Table 2, is explained below:

e [, is the sum of the length of therp_doc top-ranked documents, ardp_doc is a parameter of the query

expansion methodology.

e tf, is the frequency of the query term in the top-ranked document
e token. is the total number of tokens in the whole collection.
e P, is given by%, whereF' is the term frequency of the query term in the whole collecgod NV is the

number of documents in the whole collection.

tfals
token.

e Py is given by =
e D is given by:

whereP, = tf,/l, andP, =

3 Web Track

P 1
P, - log,y ?x + P, - log,

token

- P,

1-P.

(%)

Our experiments for the Web track of TREC2004 continue tladuation of a decision mechanism for the dynamic
application of appropriate retrieval approaches on a perngbasis. We use Terrier, a modular Information
Retrieval framework and its associated DFR-based weigiadels, as described in Section 2.



We have submitted runs for the mixed query task of the Welktdacthis task, there are 225 topics, which can
be either topic distillation, named page finding, or homepiagling topics. The queries are created from the title
of each topic. However, the system is not aware of the actpalaf each query, during retrieval. This task is more
similar to the operational setting of a Web search enginélwteceives user queries without explicit evidence of
the query type. Our aim is to use a decision mechanism foctiedean appropriate retrieval approach for each
query, based on evidence from the hyperlink structure amdtichor text of the set of retrieved documents. More
specifically, the decision mechanism is focused on ideintifyvhen to favour the entry points or homepages of
relevant web sites.

3.1 Decison Mechanism

The decision mechanism we use employs two characteridtibe et of retrieved documents, in order to select
an appropriate retrieval approach for each query.

The first characteristic is thesefulness of the hyperlink structusghich estimates whether there are non-
random patterns of hyperlinks within the set of retrievedwtoents [14]. If we detect such patterns, then we
assume that there are clusters of documents about the aqupécy Therefore, it is preferred to favour the entry
points, or the central nodes of these clusters.

We define the usefulness of the hyperlink structure as therstnt Jensen-Shannon divergence between
two different score distributions. The first one is the canhtnalysis score distributiofl = {s;}, wheres; is
the content analysis score of the documénfrom the set of retrieved documents. In order to reduce the
computational overhead, we consider only the/3&bf the topk ranked documents, according to the distribution
{si}. We define the second distributi@h = {u;}, so as to favour the relevant documents that point to other
relevant documents ip:

U; = S; + E:Sj7 diGDk,deD
di—d;
whered; — d; denotes that there is a hyperlink from documéjto document!;. We normalise both distribu-
tions S andU, so thatzd cpr Si = Zd epr u; = 1 and obtain the dlstr|but|on§n = {sn;} andU,, = {un;}
respectively. The usefulness of the hyperlmk structurgeiined as the symmetric Jensen-Shannon divergence
L(S,,U,) betweenS,, andU,,, as follows:

L(S,,Uy,) un; lo ui sn;lo i 6
( ) dze;) g2 un, n SZL dXE:D g2 un, n sm (6)

The second characteristic of the set of retrieved docunisrasnovel estimate of the number pbtential
homepagesvith all the query terms in the anchor text of their incomingpérlinks. We assume that if the user
submits a query, where all the terms appear in the anchootéwtperlinks pointing to a homepage of a web site,
then it is more useful to favour the homepage as the entryt farithe site.

The set of potential homepagékcorresponds to the documents with root, top directory, ¢ piRL types,
as defined by Kraaij et al. [12]. If we denote the anchor testhteof a documend; by a;, and the set of query
terms byg, then the numbeph,,,,.1o- Of potential homepages with all the query terms in anchdrisegtefined as
follows:

phanchor = |{dz|dz € (D N H) Ng C az}| (7)

Our decision mechanism employ&S,,, U,,) and phancror @S Shown in Table 3. More specifically, if both
L(S,,U,) andphanchor are lower or equal to the thresholtjsandt,;, respectively (case 1), then we assume that
the query is specific and we do not favour the entry points andpmages of web sites. On the other hand, if both
L(S,,U,) andphgn,chor are higher than the thresholtisandt,,, respectively (case 1V), then we assume that it is



phancho'r S tph phancho'r > tph
L(S,»,U,) <tr | casel(do notfavour entry pointg) case Il (low confidence)
L(S,,U,) > tr, case |l (low confidence) case |V (favour entry points

Table 3: The decision mechanism that selects an appropeiaieval approach for each query.

more useful to favour the entry points or homepages of wels ditom the set of retrieved documents. For the two
other cases, we cannot say with confidence whether we shaxddif the entry points from the set of retrieved
documents.

3.2 Description of experimentsand results

We have submitted five official runs for the mixed query taslar &l submitted runs, we have indexed the
.GOV test collection by removing standard stop-words ampdyépg Porter’'s stemming algorithm. For the content
analysis, we have used the weighting model PL2, as desciib8dction 2 and Table 1. The term frequency
normalisation parameter was automatically set equal ta28;Lising the approach described in Section 2.

We have used two different retrieval approaches. For thedirs (CA), we extend the documents by adding
the anchor text of their incoming hyperlinks, and performtent analysis with PL2. For the second approach
(CAU150), we re-rank the top 150 documents retrieved with @3ng the score:

1
% log, (urlpath_len; + 1)

score; = §;

(8)

wheres; is the score assigned to documépnby the approach CA, andripath_len; is the length in characters
of the URL path ofd;.

For both retrieval approaches CA and CAU150, the contenlysisascores of documents are increased by
a given percentage if the query terms appear either in thboariext, or in the title of the documents. The
percentage of the increase was set empirically, usingitigridata from the TREC2003 topic distillation and
known item tasks [6]. More specifically, if we apply CA and aqutermt appears in the anchor text or in the
title of a document, then we increase the term’s weight indineument’s score by 8% or 7% respectively. If we
apply CAU150 and a query termappears in the anchor text of a document, then we increasedight oft in
the document'’s score by 20%.

The evaluation results of our official submitted runs fortaflics, as well as for each type of topics, are shown
in Table 4. The evaluation measures are the mean averagsipne@AP), success at 1 retrieved document
(Suc@1), success at 5 retrieved documents (Suc@5) andssuatc&0 retrieved documents (Suc@10). More
specifically, for the named page finding and homepage findipigs, average precision corresponds to the recip-
rocal of the rank of the relevant retrieved document, whemetlis one relevant document. The bold entries in
Table 4 correspond to the run which resulted in the highdeevaf the respective evaluation measure.

The first two runs, uogWebCA and uogWebCAU150, corresponautobaselines, where we apply CA or
CAU150 for all queries, respectively. With respect to MABHT Table 4, CA is more effective for named page
finding queries, while CAU150 is more effective for topictdiation queries. Their performance is similar for
homepage finding queries, while CA is more effective than CBWQover all queries.

For the next three runs, we use the decision mechanism, vilnertaresholds are set after training with the
TREC2003 topic distillation and known item topics. More dfieally, in the third run, uogWebSelAn, we use
only phanchor, @s shown in Table 5, and apply CAU150 when there are moretfjas 1 potential homepages
with all the query terms in the anchor text, otherwise we agA\. We can see from Table 4 that this run results in



[ Run | MAP  Suc@l Suc@5 Suc@1D MAP  Suc@l Suc@5 Suc@10
All topics Topic distillation topics
uogWebCA 0.4325 0.3733 0.6889 0.7689 0.1280 0.1733 0.5200 0.6667
uogWebCAU150| 0.3478 0.3378 0.7111 0.8444 | 0.1791 0.5067 0.7733  0.8933
uogWebSelAn 04576 04444 0.7600 0.8178 | 0.1655 0.3600 0.6800 0.7733
uogWebSelL 0.3895 0.3467 0.7289  0.8089 0.1625 0.3733 0.6933  0.7867
uogWebSelAnL | 0.4569 0.4267 0.7422 0.8000 0.1521 0.2933 0.6267 0.720(
Named page finding topics Homepage finding topics

uogWebCA 0.6082 0.4933 0.7867 0.8400 | 0.5613 0.4533 0.7600 0.800¢
uogWebCAU150| 0.3324 0.1333 0.6133  0.8133 0.5318 0.3733 0.7467 0.8267
uogWebSelAn 0.6042 0.4933 0.7867 0.8400 | 0.6031 0.4800 0.8133 0.8400
uogWebSelL 0.4279 0.2400 0.6933 0.8000 0.5780 0.4267 0.8000 0.8400
uogWebSelAnL | 0.6082 04933 0.7867 0.8400 | 0.6104 0.4933 0.8133  0.8400

Table 4: Evaluation of the official submitted runs to the mlixgiery task of the Web track.

phanchzn' > 1
apply CAU150

phancho’r' S 1
apply CA

Table 5: The decision mechanism used in run uogWebSelAn.

the highest MAP, and success at 1 and 5 retrieved documemetsalbqueries. Moreover, it performs similarly to
the baselines for the topic distillation and named pageritpdueries, while it outperforms both CA and CAU150
for the homepage finding queries.

The fourth run, uogWebSelL, is based on a decision mechathiatemploys the usefulness of the hyperlink
structureL(S,,, U,), computed from the top = 150 retrieved documents (Table 6). If.S,,, U,,) is higher than
the threshold, = 0.26, then we apply CAU150, otherwise we apply CA. Considering®ffom Table 4, we can
see that this approach works well for the topic distillateord the homepage finding topics, but it is not equally
effective for the named page finding topics. If we considegaéries, the run uogWebSelL performs similarly to
the baseline uogWebCAU150.

For the fifth run, uogWebSelAnL, we select an appropriatdeed! approach based on baph,,,.,. and
L(S,,Uy,), as shown in Table 7. More specifically, we apply CAU15@.{fS,,, U,,) > 0.26 andphanchor > 1,
otherwise we apply CA. This run performs as well as the best angWebSelAn, with respect to MAP from
Table 4. In addition, it is the most effective for the homep#igding topics and equally effective as applying CA
uniformly for named page finding topics.

Overall, we can see from the results in Table 4 that the se¢eapplication of different retrieval approaches
is more effective than the uniform application of one re@ieapproach for all queries. The decision mechanism
that employpha.chnor IS the most effective over all queries. In addition, the dieci mechanism that employs
bothph,mchor aNdL(Sy,, U, ) performs similarly well. Moreover, it is the most effectiapproach for both named
page and homepage finding queries. In both cases, the téxtohation from the anchor text is an important
source of evidence for selecting an appropriate retrigyat@ach per query.

L(5,,U,) < 0.26

L(S,,Un) > 0.26

apply CA

apply CAU150

Table 6: The decision mechanism used in run uogWebSelL.



phanchor S 1 phanchor > 1
L(Sn,Un) <0.26 apply CA apply CA
L(S,,Uxn) > 0.26 apply CA apply CAU150

Table 7: The decision mechanism used in run uogWebSelAnL.

4 Robust Track

In our participation in the Robust Track, we aim to test aesedf techniques, including two novel pre-retrieval
query performance predictors, a refined weighting functewommender (WFR) mechanism and an enhanced
term frequency normalisation parameter tuning method. hénremainder of this section, we introduce these
techniqgues in Sections 4.1, 4.2 and 4.3, respectively. ¥e@bvide the experimental setting in Section 4.4 and
describe our runs in Section 4.5.

4.1 Preretrieval Query Performance Predictors

For the query performance prediction, we applied two newbppsed predictors, namely the average inverse
collection term frequency (AvICTF) and the standard dévradf idf (o;q4¢). Unlike the state-of-the-art predictors,
such as clarity score [7] and query difficulty [3], the conadign of these pre-retrieval predictors does not involve
the use of relevance scores. As a consequence, the cost péitogthese predictors is marginal. The two applied
predictors are the following:

e Average inverse collection term frequency (AvICTF). Intuitively, the performance of a query can be
reflected by the average quality of its composing terms. poasent the quality of a query term, instead of
idf , we apply Kwok’s inverse collection term frequency (ICTH)[13], Kwok suggested that ICTF can be
a good replacement fatlf which indicates the quality of a query termIn our work, we use the average
of the ICTF values of the composing query terms to infer theral quality/performance of a query:

10g2 HtEQ ICTF B 10g2 HtEQ tOkFenc
ql N ql

In the above formulal’ is the number of occurrences of a query term in the whole ciidlie andtoken,. is
the number of tokens in the whole collectiaji.is the length of a given quei§.

AvICTF =

9)

o Standard deviation of idf (0;qf). This predictor is defined as the standard deviation ofitffeof the
composing query terms, wheiéf is given by the INQUERY'sdf formula [1]:

logy (N 4 0.5) /N¢
logy(N +1)

whereN, is the number of documents in which the query térmppears and/ is the number of documents
in the whole collection.

idf =

(10)

The assumption behind this predictor is that the composngg of a poorly-performing query tend to
have similaridf values. This indicates thadf fails to differentiate the informative query terms from the
non-informative ones, resulting in poor performance.

According to our work in [11]g;4¢ has significant linear and Spearman’s correlations withesyeprecision
on the collection used in this track.



4.2 Weighting Function Recommender M echanism

The weighting function recommender (WFR) mechanism refinedast year's model selection mechanism [9].
The idea of WFR is to cope with the poorly-performing querigsdtommending the optimal weighting functions,
including document weighting and term weighting (queryangion) functions, from a set of candidate weighting
functions on a per-query basis. The mechanism follows #yesdisted below:

1. Using a specific clustering algorithm, cluster a set dhing queries intd: clusters. The clustering process
is based on the above two proposed query performance pesjice. AVICTF andr;qy.

2. Associate the optimal document weighting and term weaigHtunctions to each cluster of training queries
by relevance assessment (in this track, we use all the 1lntettuweighting functions and the 4 term
weighting functions, listed in Tables 1 and 2, as the caridideighting functions).

3. For a given new query, allocate the closest cluster to tieeygand apply the associated optimal weighting
functions of the allocated cluster.

For the query clustering, we adopt the CURE algorithm [8}thia CURE algorithm, initially, each element is
an independent cluster. The similarity between two clgstemeasured by the cosine similarity of the two closest
elements (having the highest cosine similarity), wherenwloeelements come from each cluster respectively. If we
haven elements to be processed, we start witblusters. Then, we merge the closest pair of clusters (doapr
to the cosine similarity measure) as a single cluster. Thegimg process is repeated until it resultskiclusters.
Here the numbek of clusters is the halting criterion of the algorithm.

4.3 Term Frequency Normalisation Parameter Tuning

As mentioned in Section 2, the term frequency normalisgigmameter tuning method proposed in [10] uses a set
of real queries as training queries. In our participatiothis year's TREC, these training queries were obtained
using a novel query simulation method that follows the stispesd below:

=

. Randomly choose a seed-term from the vocabulary.
2. Rank the documents containing the seed-term using afispg@cument weighting function.

3. Extract theexp_term — 1 most informative terms from thecp_doc top-ranked documents using a specific
term weighting/query expansion functiomxp_term is the required number of composing terms of the
generated queryexp_doc is a parameter of the applied query expansion methodolaygeacribed in
Section 2.

4. To avoid selecting a junk term as the seed-term, we coniidenost informative one of the extracted terms
in step 3 as the new seed-term.

5. Repeat steps 2 and 3 to extract the_term — 1 most informative terms from thexp_doc top-ranked
documents, which are ranked according to the new seed-term.

6. The sampled query consists of the new seed-term andrhéerm — 1 terms extracted in Step 5.

Adopting the above query simulation method, our tuning meétthoes not involve the use of real queries.



4.4 Experimental Setting

In this track, there are 249 test topics in total. More speslify, there are 200 old topics used in last year’s Robust
Track and 49 new topics. Also, from the 200 old topics, 50 fyeperforming topics are chosen as the hard topics.

In our submitted runs, we experimented with three types efiga with respect to the use of different topic
fields. The three types of queries are:

e Short queries: Only the title field is used.
e Normal queries: Only the description field is used.
e Long queries: All the three fields (title, description and narrative) aszd.

All the applied document weighting and term weighting (quexpansion) functions were chosen from the
DFR models introduced in Section 2.

For the weighting function recommender (WFR) mechanisnthalll1 DFR document weighting functions
and the 4 DFR term weighting functions, listed in Tables 1 2nale used as the candidate weighting functions.

For the query simulation of our term frequency normalisati@rameter tuning method described in Sec-
tion 4.3, we applied PL2 and Bol weighting functions. We dated 200 queries to sample the document length
distribution of the collection. Using the tuning methode thbtained parameter settings are- 5.90 for short
queriese = 1.61 for normal queries and = 1.73 for long queries.

In all our experiments, automatic stop-word removal andd?srstemming algorithm were applied.

Query expansion was applied in all our experiments. Usinyengerm weighting model, we extract the 40
most informative terms from the 10 top-ranked documents.

4.5 Description of Experiments

We submitted 10 runs in this track. Among the submitted reee (Table 8 for run ids and more details):

e We submitted three runs for short queries. AVICTF is appliredll these runs for query performance
prediction. uogRobSBase is the baseline for short queties. r The applied document weighting and
term weighting functions are PL2 and Bol, respectively. @arad to this baseline, uogRobSWR5 and
uogRobSWR10 aim to test the weighting function recommendé#i) mechanism. The threshold setting
of WFR, i.e. the number of clusters, is set to 5 for uogRobSWRbl#&nfor uogRobSWR10.

e Our experiments for normal queries are similar. uogRob@Hashe baseline, and WFR is applied in
uogRobDWRS5 and uogRobDWR10 with the use of different thrakkettings (i.e. 5 and 10 respectively).
However, I(n)L2 and CS are chosen as the baseline weightodets. AvICTF andr;4 are applied in
uogRobDWR10 and the other two, respectively.

e Forlong queries, besides of WFR, our term frequency nortidis parameter tuning method is also tested.
According to our study in [10], this method outperforms tlefadilt setting for normal and long queries,
and provides comparable performance with the defaultngettiVe compare the tuning method to the use
of a default setting that is applied in uogRobLBase. Not¢ ttha tuning method is applied in all the runs
except this baseline. uogRobLBase uses PL2 and Bol, resgeciThe use of the tuning method differs
uogRobLT from uogRobLBase. The other two runs, uogRobLWRBLEngRobLWR10, are again proposed
to evaluate WFR.



| Runid | docW function  termW function c Predictdr

Short Queries
uogRobSBase PL2 Bol c=5.90 AVICTF
uogRobSWR5 WFR WFR c=5.90 AVICTF
uogRobSWR10 WFR WFR c=5.90 AVICTF
Normal Queries
uogRobDBase I(n)L2 CS c=1.61 v1
uogRobDWR5 WFR WFR c=1.61 71
uogRobDWR10 WFR WFR c=1.61 AVICTF
Long Queries
uogRobLBase PL2 Bol c=1 AVICTF
uogRobLT PL2 Bol c=1.73 ~v1
uogRobLWR5 WFR WFR c=1.73 1
uogRobLWR10 WFR WFR c=1.73 AVICTF

Table 8: The submitted runs to the Robust track. Query expans applied for all the runs. docW function
and termW function stand for the applied document weighfimgtion and term weighting function respectively.
The applied setting of parametefor run uogRobLBase, i.ec = 1, is the default settingWWFR stands for the
weighting function recommender mechanism.

| Runid | pre@10 MAP  MAP(X) #norell
Old queries
uogRobSBase| .4400 .2826 .0087 32

uogRoObSWR5 | .4455 2911 .0072 35
uogRobSWR10| .4605 .2961 .0097 32

New queries
uogRobSBase| .4816 .3482 .0265
UogRObSWR5 | .4571  .3272 .0176

uogRobSWR10| .4531  .3216 .0215 6

Hard queries
uogRobSBase| .2640 1237 .0030 14
uogRoObSWR5| .2780  .1305 .0013 15

o ~

uogRobSWR10| .3160 .1360 .0025 13
All queries

uogRobSBase| .4482 .2955 .0098 39

uogRoObSWR5 | .4478 .2982 .0075 43

uogRobSWR10| .4590  .3011 .0106 38

Table 9: Results of the runs for short queries for the offiiak in the Robust track.

Among the document weighting and term weighting functiamsoduced in Section 2, we have used the
optimal ones for the 200 old queries in the baselines.

Tables 9, 10 and 11 summarise the experiment results fot, sttwmal and long queries, respectively. Also,
Table 12 provides the obtained Kendall's tau of our predgcwith average precision. From the results, we have
the following observations:

e In general, WFR achieves higher mean average precision (MiAd?) the baselines for the old queries,



| Runid | pre@10 MAP  MAP(X) #norel|

Old queries
uogRobDBase | .4305 .2732 .0062 38
uogRobDWR5 | .4460  .2822 .0070 31
uogRobDWR10| .4535  .2861 .0072 32
New queries
uogRobDBase | .5510 .3888 .0259 6
uogRobDWR5 | .5408  .3834 .0234 6
uogRobDWR10| .5286  .3736 .0227 6
Hard queries
uogRobDBase | .3000 .1230 .0033 15
uogRobDWR5 | .3040  .1328 .0032 10
uogRobDWR10| .2960  .1308 .0019 14
All queries
uogRobDBase | .4542 .2959 .0070 44
uogRobDWR5 | .4647 .3021 .0079 37
uogRobDWR10| .4683 .3033 .0083 38

Table 10: Results of the runs for normal queries for the @ffieins in the Robust track.

| Runid [ pre@10 MAP MAP(X) #norel|
Old queries
uogRobLBase | .4715  .2927 .0130 31
uogRobLT 4705 .2970 .0136 31

uogRobLWR5 | .4800  .3028 .0134 26
uogRobLWR10| .4815  .3084 .0133 25

New queries
uogRobLBase | .4939 .3586 .0325
uogRobLT .5000  .3776 .0390

uogRobLWR5 | .5122 .3703 .0388
uogRobLWR10| .5143  .3679 .0295

Hard queries
uogRobLBase | .3100 .1609 .0150 34
uogRobLT .3240  .1552 .0161 33
uogRobLWR5 | .3180  .1608 .0158 28
uogRobLWR10| .3120 .1571 .0148 28

W NN W

All queries
uogRobLBase | .4759 .3056 .0150 34
uogRobLT 4763 .3128 .0161 33
uogRobLWR5 | .4863 3161 .0158 28
uogRobLWR10| .4880 .3201 .0148 28

Table 11: Results of the runs for long queries for the offinials in the Robust track.

including the hard queries, but not for the new queries. Thight be due to the use of large threshold
values for the query clustering process. We are in the psostsunning unofficial runs with the use of
smaller threshold settings. We will report these unoffinigs in the final proceedings.



| Run id | Predictor  tau |

Short queries
uogRobSBase| AVICTF 0.259
uogRobSWR5 | AVICTF  0.257

uogRobSWR10| AvVICTF 0.270

Normal queries
uogRobDBase Oidf 0.258
uogRobDWR5 Oidf 0.259

uogRobDWR10| AvICTF  0.240

Long queries
uogRobLBase | AvVICTF 0.163
uogRobLT Oidf 0.166
uogRobWR5 Tidf 0.172
uogRobWR10 | AVICTF 0.176

Table 12: The Kendall's tau of the applied predictors witkerage precision for the official runs in the Robust
track.

e For the new queries, it is interesting to see that using nbandhlong queries, WFR leads to higher pre@10,
but lower MAP than the baselines.

e Our term frequency normalisation parameter tuning methadesforms the baseline in the experiments for
long queries. Compared with the baseline, i.e. uogRobLBasgRobLT achieves 5.30% of improvement
for the new queries, and 2.36% of improvement for all the 24érigs (see Table 11).

e According to the results in Table 12, the obtained Kend#diisvalues of our query performance predictors
with average precision are not as good as expected, althbegtorrelations for short and normal queries
are still respectable. We suggest that this might be dueetaisle of pseudo query expansion in our runs,
which could affect the effectiveness of the applied prexct We will investigate this issue and report
related results in the final proceedings.

5 TerabyteTrack

In the Terabyte track, we use Terrier in a distributed sgttinspired by our simulation study in [4]. We test the
effectiveness of techniques such as the use of anchor tatidp query expansion, and the automatic parameter
tuning of term frequency normalisation, for an adhoc retigask and the .GOV2 test collection. Moreover,
we use a selection mechanism, which allocates the optinirdent ranking and query expansion models on a
per-query basis. In the remainder of this section, we desthie indexing process and our retrieval experiments.

5.1 Indexing

In order to index the .GOV2 test collection, we employ a laneérted file approach [15]. We split the collection
in a number of disjoint sets of documents and index them stglsir While indexing, we remove standard stop-
words and apply the first step of Porter’s stemming algorithior each disjoint set of documents, we create the
following data structures:



| without anchor text  with anchor text

Total size 17.48GB 18.29GB
Inverted file size 7.77GB 8.47GB
Direct file size 7.00GB 7.70GB
Lexicon size 1.84GB 1.25GB
Document index size 0.87GB 0.87GB

Table 13: The total sizes of the all the data structures eried files and the direct files on disk, with or without
anchor text.

e adirect file that contains all the terms of each document. The direct dilesed for the pseudo query
expansion models, given in Table 2.

e aninverted filethat contains all the document identifiers, in which a teripesps.
e alexiconthat contains the vocabulary of the indexed documents.
e adocument indethat contains information about the indexed documents.

The direct and inverted files are compressed usirgncoding for the differences of term and document
identifiers respectively, and unary encoding for the witiotument and within-collection frequencies. The sizes
of the data structures on disk are shown in Table 13. Althauglndex the full text of all documents, the use of
compression results in great savings of disk space. Moreifgdly, when we index the content of documents
only, the total size of the data structures on disk is 17.48@#8ch corresponds to less than 5% of the collection
size. In the same index, the total size of the inverted fil&s43GB, or 1.82% of the collection size. In order to
apply pseudo query expansion efficiently, we also built dal¢exicon for the whole collection, the size of which
is 0.60GB.

Using the same indexing approach, we index the collecticecarsd time, after adding to the documents the
anchor text of the incoming hyperlinks. We have added théanantext from 361,379,741 hyperlinks, without
using the information about duplicate documents, or retireetween documents. From Table 13, we can see
that the total size of the data structures on disk is 18.29%B,29% of the collection size, while the total size of
the inverted files only is 8.47GB (1.99% of the collectiore3iz

For indexing the collection, we used one AMD Athlon 1600 mssor, running at 1.4GHz and one Intel Xeon
processor, running at 2.8GHz. The total cumulative CPU timgeiired for building each of the indices was 12,037
minutes and 30,104 minutes respectively.

5.2 Description of Experiments

For our experiments in the adhoc retrieval task of the Teeatrgick, we have used a distributed version of Terrier.
In this system, a central broker receives the queries anaissithem to several independent query servers. The
query servers assign scores to documents and send thd pstdiaf results back to the broker. The broker
collects all the partial lists of results and merges thenrdepto create a final ranked list of retrieved documents.
The scores of documents are computed using global stafistitlected by the broker from the query servers.
Therefore, the results of our distributed retrieval systemequivalent to the results we would obtain if we used
Terrier in a centralised setting.

We have tested both short and long queries. The short queeiescreated from the title field of the topics,
while the long queries were created from all fields of thedsytitle, description and narrative).

In Table 14, we present an overview of our official submitteds: For all five runs, the only parameter of
the system, related to the term frequency normalisatios,auomatically set te = 15.34 for short queries and



[ Run Description Query Type  Time to retrieve 20 dogs.

uogTBBaseS PL2 content retrieval short 4 sec
uogTBBaselL PL2 content retrieval long 28 sec
uogTBQEL Pseudo query expansion long 46 sec
uogTBANchS PL2 content and anchor text retrieval short 3 sec
uogTBPoOIQEL Weighting model selection long 46 sec

Table 14: Description of our official submitted runs to theal®yte track.

¢ = 2.16 for long queries, using the approach described in Sectiovith,the sampling of queries described in
Section 4.3.

Our first run, uogTBBaseS is a content-only baseline, whexeemploy short queries and assign scores to
documents using the weighting model PL2 from the DFR franrkeyas described in Section 2 and Table 1. For
the second run, uogTBBaseL, we use the weighting model PH2 lamg queries. In the third run, we employ
pseudo query expansion. More specifically, we expand tlggnadiquery by adding the 20 most informative terms
from the 5 top-ranked documents, using the term weightingehBol from Table 2. In the fourth run, uogT-
BANnchS, we extend documents by adding the anchor text of itgming hyperlinks, and use short queries for
retrieval with PL2. For the last run, uogTBPooIQEL, we usetihaple pooling technique to select the appropriate
weighting models on a per-query basis. We consider 8 documeighting models from Table 1 (i.e. all the
weighting models apart from BB2, PB2 and I(F)B2), and therftereighting models from Table 2, in order
to create the pool. Thus, we hase<x 4 = 32 pairs of document weighting and term weighting models. For a
given query, we create a pool, which contains documentgvett among the top 15 ranks by at least 28 pairs of
models. Then, we apply the weighting models that retrievetrabthe documents in the pool.

In all related experiments, we used 4 machines, with 8 pemresaind 6GB of memory in total. The configu-
ration of the machines is the following:

e one machine with 2GB of memory and 4 Intel Xeon processors8&i2z.
e one machine with 2GB of memory and 2 AMD Athlon processors4GHz.
e two machines with 1GB of memory and one Intel Pentium 4 at PiAG

All the data structures were saved on a RAID disk, mountecherfitst machine. The time to retrieve the top 20
documents for each of the five runs is shown in Table 14. It lshbe stressed that a better throughput could be
achieved by using more query servers, as suggested in [4].

6 Conclusions

We have participated in the Web, the Robust and the Teralatkst of TREC2004, using our retrieval system,
Terrier, in both a centralised and a distributed setting.

In our experiments for the Web track, we use a decision mésimathat identifies the queries for which to
favour the entry points of relevant web sites and appliespgmagriate retrieval approach. From our results, we
can see that using the decision mechanism results in impgoni@rovements over the uniform application of one
retrieval approach for all queries.

For the Robust track, we have proposed two novel pre-refrigerformance predictors. We employ these
predictors in a weighting function recommender mechantsan $elects the optimal weighting function for the



poorly-performing queries in an effective way. Furthermyawe have employed a refined approach for automati-
cally setting the value of the term frequency normalisaiarameters, without the need of real user queries in the
tuning process.

With our participation in the Terabyte track, we have evedddhe scalability of a distributed version of Terrier
in handling very large test collections, such as the .GOV2. HAve seen that even with very limited resources,
we can use Terrier to index and experiment with .GOV2.

Overall, we have seen that Terrier is a scalable and modw@aareivork, which provides parameter-free base-
lines and it can be used effectively in a variety of differegttieval settings
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