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Abstract

With our participation in TREC2004, we test Terrier, a modular and scalableInformation Retrieval frame-
work, in three tracks. For the mixed query task of the Web track, we employ a decision mechanism for selecting
appropriate retrieval approaches on a per-query basis. For the robust track, in order to cope with the poorly-
performing queries, we use two pre-retrieval performance predictors and a weighting function recommender
mechanism. We also test a new training approach for the automatic tuning ofthe term frequency normalisation
parameters. In the Terabyte track, we employ a distributed version of Terrier and test the effectiveness of tech-
niques, such as using the anchor text, pseudo query expansion and selecting different weighting models for each
query.

1 Introduction

With our participation in TREC2004, we test our InformationRetrieval (IR) framework, Terrier, in a variety
of different settings. Terrier is a modular and scalable framework, for the rapid development of large-scale IR
applications. It provides indexing and retrieval functionalities, as well as a number of parameter-free weighting
models, based on the Divergence From Randomness (DFR) framework [2]. Terrier stands for TErabyte RetrIEveR,
and further information can be found at http://ir.dcs.gla.ac.uk/terrier.

We have submitted official runs to three tracks of TREC2004. For the Web track, we test the selective applica-
tion of different retrieval approaches on a per-query basis. In the Robust track, we employ two novel pre-retrieval
performance predictors in a weighting function recommender mechanism, in order to use the optimal weighting
functions/models for the poorly-performing queries. We also refine the automatic tuning of the term frequency
normalisation parameters, by creating samples of queries,instead of using relevance information. In both the Web
and Robust tracks, we use a centralised version of Terrier. For the Terabyte track, we use Terrier in a distributed
setting, in order to handle the test collection .GOV2, and evaluate retrieval techniques, which have been effective
in the context of previous adhoc and Web retrieval TREC tasks.

The remainder of the paper is organised as follows. Section 2contains a description of the Terrier framework.
In Section 3, we describe our approach for the mixed query task of the Web track. Section 4 presents our exper-
iments for the Robust track. In Section 5, we describe our participation in the Terabyte track, and we close with
some concluding remarks in Section 6.



2 Terrier Information Retrieval Framework

Terrier offers a number of DFR-based models, classical and recent models for document weighting, as well as
DFR-based and classical term weighting models for query expansion. More specifically, the relevance score of a
document d for a particular query Q is given by:

score(d,Q) =
∑

t∈Q

w(t, d) (1)

wherew(t, d) is the weight of the documentd for a query termt. In Table 1, we provide the formulas for the
different modelsw(t, d) we have used in our experiments for TREC2004.

Model Formula

BB2 w(t, d) = F+1
Nt·(tfn+1)

�
− log2(N − 1) − log2(e) + f(N + F − 1, N + F − tfn − 2) − f(F, F − tfn)

�
BL2 w(t, d) = 1

tfn+1

�
− log2(N − 1) − log2(e) + f(N + F − 1, N + F − tfn − 2) − f(F, F − tfn)

�
PB2 w(t, d) = F+1

Nt·(tfn+1)

�
tfn · log2

tfn

λ
+ (λ + 1

12·tfn
− tfn) · log2 e + 0.5 · log2(2π · tfn)

�
PL2 w(t, d) = 1

tfn+1

�
tfn · log2

tfn

λ
+ (λ + 1

12·tfn
− tfn) · log2 e + 0.5 · log2(2π · tfn)

�
I(n)B2 w(t, d) = F+1

Nt·(tfn+1)

�
tfn · log2

N+1
Nt+0.5

�
I(n)L2 w(t, d) = 1

tfn+1

�
tfn · log2

N+1
Nt+0.5

�
I(F)B2 w(t, d) = F+1

Nt·(tfn+1)

�
tfn · log2

N+1
F+0.5

�
I(F)L2 w(t, d) = 1

tfn+1

�
tfn · log2

N+1
F+0.5

�
I(ne)B2 w(t, d) = F+1

Nt·(tfn+1)

�
tfn · log2

N+1
ne+0.5

�
I(ne)L2 w(t, d) = 1

tfn+1

�
tfn · log2

N+1
ne+0.5

�
I(ne)C2 w(t, d) = F+1

Nt·(tfne+1)

�
tfne · log2

N+1
ne+0.5

�
Table 1: Terrier DFR-based document weighting models

The notation from Table 1 is explained below:

• tf is the within-document frequency of termt in documentd.

• F is the term frequency of termt in the whole collection.

• N is the number of documents in the collection.

• Nt is the document frequency of termt.

• ne is given byN ·
(

1 − (1 − Nt

N
)F

)

.

• λ is given by F
N

andF ≪ N .

• The relationf is given by the Stirling formula:

f(n,m) = (m + 0.5) · log
2
(
n

m
) + (n − m) · log

2
n (2)

• tfn is the normalised term frequency. It is given by thenormalisation 2:

tfn = tf · log
2
(1 + c ·

avg l

l
) (3)

wherec is a parameter.l andavg l are the document length of the documentd and the average document
length in the collection respectively.



• tfne is also the normalised term frequency. It is given by the modified version of the normalisation 2:

tfne = tf · loge(1 + c ·
avg l

l
) (4)

The only free parameter of the DFR framework is the term frequency normalisation parameterc from Eqs. 3
and 4. The tuning of such parameters is a crucial issue in information retrieval, because it has an important impact
on the retrieval performance [5, 2]. A classical tuning method is the pivoted normalisation [16], which fits the
document length distribution to the length distribution ofrelevant documents. However, since document length
distribution is collection-dependent, the pivoted normalisation suffers from the collection-dependency problem.
Indeed, the optimal parameter settings of diverse documentcollections are different [5].

In our experiments with Terrier, the parameterc is automatically tuned, according to a method proposed by
He and Ounis [10]. This method assumes a constant optimal normalisation effect with respect to the document
length distribution of the collection, and it assigns the parameter value such that it gives this constant. Thus, it is
a collection-independent approach. The proposed method in[10] uses relevance information for training.

Terrier provides various DFR-based models for query expansion, based on extracting the most informative
terms from a set of top-ranked documents. In Table 2, we present the term weighting modelsw(t) used in our
experiments for TREC2004.

Model Formula
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Table 2: Terrier DFR-based term weighting models.

The notation from Table 2, is explained below:

• lx is the sum of the length of theexp doc top-ranked documents, andexp doc is a parameter of the query
expansion methodology.

• tfx is the frequency of the query term in the top-ranked documents.
• tokenc is the total number of tokens in the whole collection.
• Pn is given by F

N
, whereF is the term frequency of the query term in the whole collection andN is the

number of documents in the whole collection.
• Pf is given by tfx·lx
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.

• D is given by:
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wherePx = tfx/lx andPc = F
tokenc

.

3 Web Track

Our experiments for the Web track of TREC2004 continue the evaluation of a decision mechanism for the dynamic
application of appropriate retrieval approaches on a per-query basis. We use Terrier, a modular Information
Retrieval framework and its associated DFR-based weighting models, as described in Section 2.



We have submitted runs for the mixed query task of the Web track. In this task, there are 225 topics, which can
be either topic distillation, named page finding, or homepage finding topics. The queries are created from the title
of each topic. However, the system is not aware of the actual type of each query, during retrieval. This task is more
similar to the operational setting of a Web search engine, which receives user queries without explicit evidence of
the query type. Our aim is to use a decision mechanism for selecting an appropriate retrieval approach for each
query, based on evidence from the hyperlink structure and the anchor text of the set of retrieved documents. More
specifically, the decision mechanism is focused on identifying when to favour the entry points or homepages of
relevant web sites.

3.1 Decision Mechanism

The decision mechanism we use employs two characteristics of the set of retrieved documents, in order to select
an appropriate retrieval approach for each query.

The first characteristic is theusefulness of the hyperlink structure, which estimates whether there are non-
random patterns of hyperlinks within the set of retrieved documents [14]. If we detect such patterns, then we
assume that there are clusters of documents about the query topic. Therefore, it is preferred to favour the entry
points, or the central nodes of these clusters.

We define the usefulness of the hyperlink structure as the symmetric Jensen-Shannon divergence between
two different score distributions. The first one is the content analysis score distributionS = {si}, wheresi is
the content analysis score of the documentdi from the set of retrieved documentsD. In order to reduce the
computational overhead, we consider only the setDk of the topk ranked documents, according to the distribution
{si}. We define the second distributionU = {ui}, so as to favour the relevant documents that point to other
relevant documents inD:

ui = si +
∑

di→dj

sj , di ∈ Dk, dj ∈ D

wheredi → dj denotes that there is a hyperlink from documentdi to documentdj . We normalise both distribu-
tionsS andU , so that

∑

di∈Dk si =
∑

di∈Dk ui = 1 and obtain the distributionsSn = {sni} andUn = {uni}
respectively. The usefulness of the hyperlink structure isdefined as the symmetric Jensen-Shannon divergence
L(Sn, Un) betweenSn andUn, as follows:
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∑

di∈D

uni log
2

uni

uni

2
+ sni

2

+
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sni log
2

sni
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2
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2

(6)

The second characteristic of the set of retrieved documentsis a novel estimate of the number ofpotential
homepageswith all the query terms in the anchor text of their incoming hyperlinks. We assume that if the user
submits a query, where all the terms appear in the anchor textof hyperlinks pointing to a homepage of a web site,
then it is more useful to favour the homepage as the entry point for the site.

The set of potential homepagesH corresponds to the documents with root, top directory, or path URL types,
as defined by Kraaij et al. [12]. If we denote the anchor text terms of a documentdi by ai, and the set of query
terms byq, then the numberphanchor of potential homepages with all the query terms in anchor text is defined as
follows:

phanchor = |{di|di ∈ (D ∩ H) ∧ q ⊆ ai}| (7)

Our decision mechanism employsL(Sn, Un) andphanchor as shown in Table 3. More specifically, if both
L(Sn, Un) andphanchor are lower or equal to the thresholdstL andtph respectively (case I), then we assume that
the query is specific and we do not favour the entry points or homepages of web sites. On the other hand, if both
L(Sn, Un) andphanchor are higher than the thresholdstL andtph respectively (case IV), then we assume that it is



phanchor ≤ tph phanchor > tph

L(Sn, Un) ≤ tL case I (do not favour entry points) case III (low confidence)
L(Sn, Un) > tL case II (low confidence) case IV (favour entry points)

Table 3: The decision mechanism that selects an appropriateretrieval approach for each query.

more useful to favour the entry points or homepages of web sites, from the set of retrieved documents. For the two
other cases, we cannot say with confidence whether we should favour the entry points from the set of retrieved
documents.

3.2 Description of experiments and results

We have submitted five official runs for the mixed query task. For all submitted runs, we have indexed the
.GOV test collection by removing standard stop-words and applying Porter’s stemming algorithm. For the content
analysis, we have used the weighting model PL2, as describedin Section 2 and Table 1. The term frequency
normalisation parameter was automatically set equal to c=1.28, using the approach described in Section 2.

We have used two different retrieval approaches. For the first one (CA), we extend the documents by adding
the anchor text of their incoming hyperlinks, and perform content analysis with PL2. For the second approach
(CAU150), we re-rank the top 150 documents retrieved with CA, using the score:

scorei = si ×
1

log
2
(urlpath leni + 1)

(8)

wheresi is the score assigned to documentdi by the approach CA, andurlpath leni is the length in characters
of the URL path ofdi.

For both retrieval approaches CA and CAU150, the content analysis scores of documents are increased by
a given percentage if the query terms appear either in the anchor text, or in the title of the documents. The
percentage of the increase was set empirically, using training data from the TREC2003 topic distillation and
known item tasks [6]. More specifically, if we apply CA and a query termt appears in the anchor text or in the
title of a document, then we increase the term’s weight in thedocument’s score by 8% or 7% respectively. If we
apply CAU150 and a query termt appears in the anchor text of a document, then we increase theweight of t in
the document’s score by 20%.

The evaluation results of our official submitted runs for alltopics, as well as for each type of topics, are shown
in Table 4. The evaluation measures are the mean average precision (MAP), success at 1 retrieved document
(Suc@1), success at 5 retrieved documents (Suc@5) and success at 10 retrieved documents (Suc@10). More
specifically, for the named page finding and homepage finding topics, average precision corresponds to the recip-
rocal of the rank of the relevant retrieved document, when there is one relevant document. The bold entries in
Table 4 correspond to the run which resulted in the highest value of the respective evaluation measure.

The first two runs, uogWebCA and uogWebCAU150, correspond toour baselines, where we apply CA or
CAU150 for all queries, respectively. With respect to MAP from Table 4, CA is more effective for named page
finding queries, while CAU150 is more effective for topic distillation queries. Their performance is similar for
homepage finding queries, while CA is more effective than CAU150 over all queries.

For the next three runs, we use the decision mechanism, wherethe thresholds are set after training with the
TREC2003 topic distillation and known item topics. More specifically, in the third run, uogWebSelAn, we use
only phanchor, as shown in Table 5, and apply CAU150 when there are more thantph = 1 potential homepages
with all the query terms in the anchor text, otherwise we apply CA. We can see from Table 4 that this run results in



Run MAP Suc@1 Suc@5 Suc@10 MAP Suc@1 Suc@5 Suc@10

All topics Topic distillation topics
uogWebCA 0.4325 0.3733 0.6889 0.7689 0.1280 0.1733 0.5200 0.6667
uogWebCAU150 0.3478 0.3378 0.7111 0.8444 0.1791 0.5067 0.7733 0.8933
uogWebSelAn 0.4576 0.4444 0.7600 0.8178 0.1655 0.3600 0.6800 0.7733
uogWebSelL 0.3895 0.3467 0.7289 0.8089 0.1625 0.3733 0.6933 0.7867
uogWebSelAnL 0.4569 0.4267 0.7422 0.8000 0.1521 0.2933 0.6267 0.7200

Named page finding topics Homepage finding topics
uogWebCA 0.6082 0.4933 0.7867 0.8400 0.5613 0.4533 0.7600 0.8000
uogWebCAU150 0.3324 0.1333 0.6133 0.8133 0.5318 0.3733 0.7467 0.8267
uogWebSelAn 0.6042 0.4933 0.7867 0.8400 0.6031 0.4800 0.8133 0.8400
uogWebSelL 0.4279 0.2400 0.6933 0.8000 0.5780 0.4267 0.8000 0.8400
uogWebSelAnL 0.6082 0.4933 0.7867 0.8400 0.6104 0.4933 0.8133 0.8400

Table 4: Evaluation of the official submitted runs to the mixed query task of the Web track.

phanchor ≤ 1 phanchor > 1

apply CA apply CAU150

Table 5: The decision mechanism used in run uogWebSelAn.

the highest MAP, and success at 1 and 5 retrieved documents, over all queries. Moreover, it performs similarly to
the baselines for the topic distillation and named page finding queries, while it outperforms both CA and CAU150
for the homepage finding queries.

The fourth run, uogWebSelL, is based on a decision mechanismthat employs the usefulness of the hyperlink
structureL(Sn, Un), computed from the topk = 150 retrieved documents (Table 6). IfL(Sn, Un) is higher than
the thresholdtL = 0.26, then we apply CAU150, otherwise we apply CA. Considering MAP from Table 4, we can
see that this approach works well for the topic distillationand the homepage finding topics, but it is not equally
effective for the named page finding topics. If we consider all queries, the run uogWebSelL performs similarly to
the baseline uogWebCAU150.

For the fifth run, uogWebSelAnL, we select an appropriate retrieval approach based on bothphanchor and
L(Sn, Un), as shown in Table 7. More specifically, we apply CAU150 ifL(Sn, Un) > 0.26 andphanchor > 1,
otherwise we apply CA. This run performs as well as the best one, uogWebSelAn, with respect to MAP from
Table 4. In addition, it is the most effective for the homepage finding topics and equally effective as applying CA
uniformly for named page finding topics.

Overall, we can see from the results in Table 4 that the selective application of different retrieval approaches
is more effective than the uniform application of one retrieval approach for all queries. The decision mechanism
that employsphanchor is the most effective over all queries. In addition, the decision mechanism that employs
bothphanchor andL(Sn, Un) performs similarly well. Moreover, it is the most effectiveapproach for both named
page and homepage finding queries. In both cases, the textualinformation from the anchor text is an important
source of evidence for selecting an appropriate retrieval approach per query.

L(Sn, Un) ≤ 0.26 L(Sn, Un) > 0.26

apply CA apply CAU150

Table 6: The decision mechanism used in run uogWebSelL.



phanchor ≤ 1 phanchor > 1

L(Sn, Un) ≤ 0.26 apply CA apply CA
L(Sn, Un) > 0.26 apply CA apply CAU150

Table 7: The decision mechanism used in run uogWebSelAnL.

4 Robust Track

In our participation in the Robust Track, we aim to test a series of techniques, including two novel pre-retrieval
query performance predictors, a refined weighting functionrecommender (WFR) mechanism and an enhanced
term frequency normalisation parameter tuning method. In the remainder of this section, we introduce these
techniques in Sections 4.1, 4.2 and 4.3, respectively. We also provide the experimental setting in Section 4.4 and
describe our runs in Section 4.5.

4.1 Pre-retrieval Query Performance Predictors

For the query performance prediction, we applied two newly proposed predictors, namely the average inverse
collection term frequency (AvICTF) and the standard deviation of idf (σidf ). Unlike the state-of-the-art predictors,
such as clarity score [7] and query difficulty [3], the computation of these pre-retrieval predictors does not involve
the use of relevance scores. As a consequence, the cost of computing these predictors is marginal. The two applied
predictors are the following:

• Average inverse collection term frequency (AvICTF). Intuitively, the performance of a query can be
reflected by the average quality of its composing terms. To represent the quality of a query term, instead of
idf , we apply Kwok’s inverse collection term frequency (ICTF).In [13], Kwok suggested that ICTF can be
a good replacement foridf which indicates the quality of a query termt. In our work, we use the average
of the ICTF values of the composing query terms to infer the overall quality/performance of a query:

AvICTF =
log

2

∏

t∈Q ICTF

ql
=

log
2

∏

t∈Q
tokenc

F

ql
(9)

In the above formula,F is the number of occurrences of a query term in the whole collection andtokenc is
the number of tokens in the whole collection.ql is the length of a given queryQ.

• Standard deviation of idf (σidf ). This predictor is defined as the standard deviation of theidf of the
composing query terms, whereidf is given by the INQUERY’sidf formula [1]:

idf =
log

2
(N + 0.5)/Nt

log
2
(N + 1)

(10)

whereNt is the number of documents in which the query termt appears andN is the number of documents
in the whole collection.

The assumption behind this predictor is that the composing terms of a poorly-performing query tend to
have similaridf values. This indicates thatidf fails to differentiate the informative query terms from the
non-informative ones, resulting in poor performance.

According to our work in [11],σidf has significant linear and Spearman’s correlations with average precision
on the collection used in this track.



4.2 Weighting Function Recommender Mechanism

The weighting function recommender (WFR) mechanism refines our last year’s model selection mechanism [9].
The idea of WFR is to cope with the poorly-performing queries by recommending the optimal weighting functions,
including document weighting and term weighting (query expansion) functions, from a set of candidate weighting
functions on a per-query basis. The mechanism follows the steps listed below:

1. Using a specific clustering algorithm, cluster a set of training queries intok clusters. The clustering process
is based on the above two proposed query performance predictors, i.e. AvICTF andσidf .

2. Associate the optimal document weighting and term weighting functions to each cluster of training queries
by relevance assessment (in this track, we use all the 11 document weighting functions and the 4 term
weighting functions, listed in Tables 1 and 2, as the candidate weighting functions).

3. For a given new query, allocate the closest cluster to the query, and apply the associated optimal weighting
functions of the allocated cluster.

For the query clustering, we adopt the CURE algorithm [8]. Inthe CURE algorithm, initially, each element is
an independent cluster. The similarity between two clusters is measured by the cosine similarity of the two closest
elements (having the highest cosine similarity), where thetwo elements come from each cluster respectively. If we
haven elements to be processed, we start withn clusters. Then, we merge the closest pair of clusters (according
to the cosine similarity measure) as a single cluster. The merging process is repeated until it results ink clusters.
Here the numberk of clusters is the halting criterion of the algorithm.

4.3 Term Frequency Normalisation Parameter Tuning

As mentioned in Section 2, the term frequency normalisationparameter tuning method proposed in [10] uses a set
of real queries as training queries. In our participation inthis year’s TREC, these training queries were obtained
using a novel query simulation method that follows the stepslisted below:

1. Randomly choose a seed-term from the vocabulary.

2. Rank the documents containing the seed-term using a specific document weighting function.

3. Extract theexp term − 1 most informative terms from theexp doc top-ranked documents using a specific
term weighting/query expansion function.exp term is the required number of composing terms of the
generated query.exp doc is a parameter of the applied query expansion methodology, as described in
Section 2.

4. To avoid selecting a junk term as the seed-term, we consider the most informative one of the extracted terms
in step 3 as the new seed-term.

5. Repeat steps 2 and 3 to extract theexp term − 1 most informative terms from theexp doc top-ranked
documents, which are ranked according to the new seed-term.

6. The sampled query consists of the new seed-term and theexp term − 1 terms extracted in Step 5.

Adopting the above query simulation method, our tuning method does not involve the use of real queries.



4.4 Experimental Setting

In this track, there are 249 test topics in total. More specifically, there are 200 old topics used in last year’s Robust
Track and 49 new topics. Also, from the 200 old topics, 50 poorly-performing topics are chosen as the hard topics.

In our submitted runs, we experimented with three types of queries with respect to the use of different topic
fields. The three types of queries are:

• Short queries: Only the title field is used.

• Normal queries: Only the description field is used.

• Long queries: All the three fields (title, description and narrative) areused.

All the applied document weighting and term weighting (query expansion) functions were chosen from the
DFR models introduced in Section 2.

For the weighting function recommender (WFR) mechanism, allthe 11 DFR document weighting functions
and the 4 DFR term weighting functions, listed in Tables 1 and2, are used as the candidate weighting functions.

For the query simulation of our term frequency normalisation parameter tuning method described in Sec-
tion 4.3, we applied PL2 and Bo1 weighting functions. We simulated 200 queries to sample the document length
distribution of the collection. Using the tuning method, the obtained parameter settings arec = 5.90 for short
queries,c = 1.61 for normal queries andc = 1.73 for long queries.

In all our experiments, automatic stop-word removal and Porter’s stemming algorithm were applied.
Query expansion was applied in all our experiments. Using a given term weighting model, we extract the 40

most informative terms from the 10 top-ranked documents.

4.5 Description of Experiments

We submitted 10 runs in this track. Among the submitted runs (see Table 8 for run ids and more details):

• We submitted three runs for short queries. AvICTF is appliedin all these runs for query performance
prediction. uogRobSBase is the baseline for short queries runs. The applied document weighting and
term weighting functions are PL2 and Bo1, respectively. Compared to this baseline, uogRobSWR5 and
uogRobSWR10 aim to test the weighting function recommender (WFR) mechanism. The threshold setting
of WFR, i.e. the number of clusters, is set to 5 for uogRobSWR5 and 10 for uogRobSWR10.

• Our experiments for normal queries are similar. uogRobDBase is the baseline, and WFR is applied in
uogRobDWR5 and uogRobDWR10 with the use of different threshold settings (i.e. 5 and 10 respectively).
However, I(n)L2 and CS are chosen as the baseline weighting models. AvICTF andσidf are applied in
uogRobDWR10 and the other two, respectively.

• For long queries, besides of WFR, our term frequency normalisation parameter tuning method is also tested.
According to our study in [10], this method outperforms the default setting for normal and long queries,
and provides comparable performance with the default setting. We compare the tuning method to the use
of a default setting that is applied in uogRobLBase. Note that the tuning method is applied in all the runs
except this baseline. uogRobLBase uses PL2 and Bo1, respectively. The use of the tuning method differs
uogRobLT from uogRobLBase. The other two runs, uogRobLWR5 and uogRobLWR10, are again proposed
to evaluate WFR.



Run id docW function termW function c Predictor

Short Queries
uogRobSBase PL2 Bo1 c = 5.90 AvICTF
uogRobSWR5 WFR WFR c = 5.90 AvICTF
uogRobSWR10 WFR WFR c = 5.90 AvICTF

Normal Queries
uogRobDBase I(n)L2 CS c = 1.61 γ1
uogRobDWR5 WFR WFR c = 1.61 γ1
uogRobDWR10 WFR WFR c = 1.61 AvICTF

Long Queries
uogRobLBase PL2 Bo1 c = 1 AvICTF

uogRobLT PL2 Bo1 c = 1.73 γ1
uogRobLWR5 WFR WFR c = 1.73 γ1
uogRobLWR10 WFR WFR c = 1.73 AvICTF

Table 8: The submitted runs to the Robust track. Query expansion is applied for all the runs. docW function
and termW function stand for the applied document weightingfunction and term weighting function respectively.
The applied setting of parameterc for run uogRobLBase, i.e.c = 1, is the default setting.WFRstands for the
weighting function recommender mechanism.

Run id pre@10 MAP MAP(X) #norel

Old queries
uogRobSBase .4400 .2826 .0087 32
uogRobSWR5 .4455 .2911 .0072 35
uogRobSWR10 .4605 .2961 .0097 32

New queries
uogRobSBase .4816 .3482 .0265 7
uogRobSWR5 .4571 .3272 .0176 8
uogRobSWR10 .4531 .3216 .0215 6

Hard queries
uogRobSBase .2640 .1237 .0030 14
uogRobSWR5 .2780 .1305 .0013 15
uogRobSWR10 .3160 .1360 .0025 13

All queries
uogRobSBase .4482 .2955 .0098 39
uogRobSWR5 .4478 .2982 .0075 43
uogRobSWR10 .4590 .3011 .0106 38

Table 9: Results of the runs for short queries for the officialruns in the Robust track.

Among the document weighting and term weighting functions introduced in Section 2, we have used the
optimal ones for the 200 old queries in the baselines.

Tables 9, 10 and 11 summarise the experiment results for short, normal and long queries, respectively. Also,
Table 12 provides the obtained Kendall’s tau of our predictors with average precision. From the results, we have
the following observations:

• In general, WFR achieves higher mean average precision (MAP)than the baselines for the old queries,



Run id pre@10 MAP MAP(X) #norel

Old queries
uogRobDBase .4305 .2732 .0062 38
uogRobDWR5 .4460 .2822 .0070 31
uogRobDWR10 .4535 .2861 .0072 32

New queries
uogRobDBase .5510 .3888 .0259 6
uogRobDWR5 .5408 .3834 .0234 6
uogRobDWR10 .5286 .3736 .0227 6

Hard queries
uogRobDBase .3000 .1230 .0033 15
uogRobDWR5 .3040 .1328 .0032 10
uogRobDWR10 .2960 .1308 .0019 14

All queries
uogRobDBase .4542 .2959 .0070 44
uogRobDWR5 .4647 .3021 .0079 37
uogRobDWR10 .4683 .3033 .0083 38

Table 10: Results of the runs for normal queries for the official runs in the Robust track.

Run id pre@10 MAP MAP(X) #norel

Old queries
uogRobLBase .4715 .2927 .0130 31

uogRobLT .4705 .2970 .0136 31
uogRobLWR5 .4800 .3028 .0134 26
uogRobLWR10 .4815 .3084 .0133 25

New queries
uogRobLBase .4939 .3586 .0325 3

uogRobLT .5000 .3776 .0390 2
uogRobLWR5 .5122 .3703 .0388 2
uogRobLWR10 .5143 .3679 .0295 3

Hard queries
uogRobLBase .3100 .1609 .0150 34

uogRobLT .3240 .1552 .0161 33
uogRobLWR5 .3180 .1608 .0158 28
uogRobLWR10 .3120 .1571 .0148 28

All queries
uogRobLBase .4759 .3056 .0150 34

uogRobLT .4763 .3128 .0161 33
uogRobLWR5 .4863 .3161 .0158 28
uogRobLWR10 .4880 .3201 .0148 28

Table 11: Results of the runs for long queries for the officialruns in the Robust track.

including the hard queries, but not for the new queries. Thismight be due to the use of large threshold
values for the query clustering process. We are in the process of running unofficial runs with the use of
smaller threshold settings. We will report these unofficialruns in the final proceedings.



Run id Predictor tau

Short queries
uogRobSBase AvICTF 0.259
uogRobSWR5 AvICTF 0.257
uogRobSWR10 AvICTF 0.270

Normal queries
uogRobDBase σidf 0.258
uogRobDWR5 σidf 0.259
uogRobDWR10 AvICTF 0.240

Long queries
uogRobLBase AvICTF 0.163

uogRobLT σidf 0.166
uogRobWR5 σidf 0.172
uogRobWR10 AvICTF 0.176

Table 12: The Kendall’s tau of the applied predictors with average precision for the official runs in the Robust
track.

• For the new queries, it is interesting to see that using normal and long queries, WFR leads to higher pre@10,
but lower MAP than the baselines.

• Our term frequency normalisation parameter tuning method outperforms the baseline in the experiments for
long queries. Compared with the baseline, i.e. uogRobLBase, uogRobLT achieves 5.30% of improvement
for the new queries, and 2.36% of improvement for all the 249 queries (see Table 11).

• According to the results in Table 12, the obtained Kendall’stau values of our query performance predictors
with average precision are not as good as expected, althoughthe correlations for short and normal queries
are still respectable. We suggest that this might be due to the use of pseudo query expansion in our runs,
which could affect the effectiveness of the applied predictors. We will investigate this issue and report
related results in the final proceedings.

5 Terabyte Track

In the Terabyte track, we use Terrier in a distributed setting, inspired by our simulation study in [4]. We test the
effectiveness of techniques such as the use of anchor text, pseudo query expansion, and the automatic parameter
tuning of term frequency normalisation, for an adhoc retrieval task and the .GOV2 test collection. Moreover,
we use a selection mechanism, which allocates the optimal document ranking and query expansion models on a
per-query basis. In the remainder of this section, we describe the indexing process and our retrieval experiments.

5.1 Indexing

In order to index the .GOV2 test collection, we employ a localinverted file approach [15]. We split the collection
in a number of disjoint sets of documents and index them separately. While indexing, we remove standard stop-
words and apply the first step of Porter’s stemming algorithm. For each disjoint set of documents, we create the
following data structures:



without anchor text with anchor text

Total size 17.48GB 18.29GB
Inverted file size 7.77GB 8.47GB
Direct file size 7.00GB 7.70GB
Lexicon size 1.84GB 1.25GB
Document index size 0.87GB 0.87GB

Table 13: The total sizes of the all the data structures, the inverted files and the direct files on disk, with or without
anchor text.

• a direct file that contains all the terms of each document. The direct file is used for the pseudo query
expansion models, given in Table 2.

• an inverted filethat contains all the document identifiers, in which a term appears.
• a lexiconthat contains the vocabulary of the indexed documents.
• adocument indexthat contains information about the indexed documents.

The direct and inverted files are compressed usingγ encoding for the differences of term and document
identifiers respectively, and unary encoding for the within-document and within-collection frequencies. The sizes
of the data structures on disk are shown in Table 13. Althoughwe index the full text of all documents, the use of
compression results in great savings of disk space. More specifically, when we index the content of documents
only, the total size of the data structures on disk is 17.48GB, which corresponds to less than 5% of the collection
size. In the same index, the total size of the inverted files is7.77GB, or 1.82% of the collection size. In order to
apply pseudo query expansion efficiently, we also built a global lexicon for the whole collection, the size of which
is 0.60GB.

Using the same indexing approach, we index the collection a second time, after adding to the documents the
anchor text of the incoming hyperlinks. We have added the anchor text from 361,379,741 hyperlinks, without
using the information about duplicate documents, or redirects between documents. From Table 13, we can see
that the total size of the data structures on disk is 18.29GB,or 4.29% of the collection size, while the total size of
the inverted files only is 8.47GB (1.99% of the collection size).

For indexing the collection, we used one AMD Athlon 1600 processor, running at 1.4GHz and one Intel Xeon
processor, running at 2.8GHz. The total cumulative CPU timerequired for building each of the indices was 12,037
minutes and 30,104 minutes respectively.

5.2 Description of Experiments

For our experiments in the adhoc retrieval task of the Terabyte track, we have used a distributed version of Terrier.
In this system, a central broker receives the queries and submits them to several independent query servers. The
query servers assign scores to documents and send the partial lists of results back to the broker. The broker
collects all the partial lists of results and merges them in order to create a final ranked list of retrieved documents.
The scores of documents are computed using global statistics, collected by the broker from the query servers.
Therefore, the results of our distributed retrieval systemare equivalent to the results we would obtain if we used
Terrier in a centralised setting.

We have tested both short and long queries. The short querieswere created from the title field of the topics,
while the long queries were created from all fields of the topics (title, description and narrative).

In Table 14, we present an overview of our official submitted runs. For all five runs, the only parameter of
the system, related to the term frequency normalisation, was automatically set toc = 15.34 for short queries and



Run Description Query Type Time to retrieve 20 docs.

uogTBBaseS PL2 content retrieval short 4 sec
uogTBBaseL PL2 content retrieval long 28 sec
uogTBQEL Pseudo query expansion long 46 sec
uogTBAnchS PL2 content and anchor text retrieval short 3 sec
uogTBPoolQEL Weighting model selection long 46 sec

Table 14: Description of our official submitted runs to the Terabyte track.

c = 2.16 for long queries, using the approach described in Section 2,with the sampling of queries described in
Section 4.3.

Our first run, uogTBBaseS is a content-only baseline, where we employ short queries and assign scores to
documents using the weighting model PL2 from the DFR framework, as described in Section 2 and Table 1. For
the second run, uogTBBaseL, we use the weighting model PL2 with long queries. In the third run, we employ
pseudo query expansion. More specifically, we expand the original query by adding the 20 most informative terms
from the 5 top-ranked documents, using the term weighting model Bo1 from Table 2. In the fourth run, uogT-
BAnchS, we extend documents by adding the anchor text of their incoming hyperlinks, and use short queries for
retrieval with PL2. For the last run, uogTBPoolQEL, we used asimple pooling technique to select the appropriate
weighting models on a per-query basis. We consider 8 document weighting models from Table 1 (i.e. all the
weighting models apart from BB2, PB2 and I(F)B2), and the 4 term weighting models from Table 2, in order
to create the pool. Thus, we have8 × 4 = 32 pairs of document weighting and term weighting models. For a
given query, we create a pool, which contains documents retrieved among the top 15 ranks by at least 28 pairs of
models. Then, we apply the weighting models that retrieve most of the documents in the pool.

In all related experiments, we used 4 machines, with 8 processors and 6GB of memory in total. The configu-
ration of the machines is the following:

• one machine with 2GB of memory and 4 Intel Xeon processors at 2.8GHz.

• one machine with 2GB of memory and 2 AMD Athlon processors at 1.4GHz.

• two machines with 1GB of memory and one Intel Pentium 4 at 2.4GHz.

All the data structures were saved on a RAID disk, mounted on the first machine. The time to retrieve the top 20
documents for each of the five runs is shown in Table 14. It should be stressed that a better throughput could be
achieved by using more query servers, as suggested in [4].

6 Conclusions

We have participated in the Web, the Robust and the Terabyte tracks of TREC2004, using our retrieval system,
Terrier, in both a centralised and a distributed setting.

In our experiments for the Web track, we use a decision mechanism that identifies the queries for which to
favour the entry points of relevant web sites and applies an appropriate retrieval approach. From our results, we
can see that using the decision mechanism results in important improvements over the uniform application of one
retrieval approach for all queries.

For the Robust track, we have proposed two novel pre-retrieval performance predictors. We employ these
predictors in a weighting function recommender mechanism that selects the optimal weighting function for the



poorly-performing queries in an effective way. Furthermore, we have employed a refined approach for automati-
cally setting the value of the term frequency normalisationparameters, without the need of real user queries in the
tuning process.

With our participation in the Terabyte track, we have evaluated the scalability of a distributed version of Terrier
in handling very large test collections, such as the .GOV2. We have seen that even with very limited resources,
we can use Terrier to index and experiment with .GOV2.

Overall, we have seen that Terrier is a scalable and modular framework, which provides parameter-free base-
lines and it can be used effectively in a variety of differentretrieval settings
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