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Abstract

In this paper we propose a new theoretical method for combining both content

and link structure analysis for Web information retrieval. This approach is based

on performing a random walk on a modified Markov chain, induced from the Web

graph. This new model is applicable either in a static way, where a global pres-

tige score is computed for every document, or in a dynamic way, where the link

structure of the results from a first pass retrieval is taken into account. The results

of experiments on the TREC WT10g and .GOV collections show that it is a robust

method, particularly suitable for dynamic link analysis. Moreover, we show that it

outperforms PageRank under the same experimental settings.

1 Introduction

Combining efficiently and in a principled way the evidence from both content and link

structure analysis is a crucial issue in Web information retrieval. Most of the method-

ologies proposed so far are either based on ad-hoc heuristics, or need computationally

intensive training for optimising their parameters.

One of the most popular algorithm for hyperlink analysis is PageRank [5]. PageRank

computes the Web popularity of a document by an invariant distribution of a Markov

chain, which is derived only from the structure of the Web graph. Therefore, PageRank

assigns global prestige scores to Web documents independently from content. There are

many extensions and variants of PageRank. For example Richardson and Domingos [24]

and Haveliwala [12] try to relate popularity with content using a predefined set of popular
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queries, or topics. These are attempts to overcome the independence of the prestige score

from topic relevance, which instead is the prior probability of retrieving a document by

content. Unfortunately, the invariant distributions of PageRank are called “invariant”

just because they are not affected by the choice of the priors. Thus the combination of

prestige scores and content scores must be obtained with a different approach.

Recognising the difficulties in combining both content and link analysis, we look

into a possibly parameter-free approach to link analysis, in which the combination of

evidence from content analysis and the structure of hyperlinks is natural and intuitive.

We propose a new methodology, which we call the Absorbing Model. This approach is

based on performing a random walk on a Markov chain induced from a modified Web

graph. Although the invariant distribution for the Absorbing Model does not exist, we

exploit this and the limiting properties of Markov chains to define the prestige score as

a well founded combination of content and link analysis. This prestige score depends

on both the link structure of the Web, as well as on the prior probabilities assigned to

documents. We have two possible ways to define the prior probabilities. For the static

application of the Absorbing Model, we can assign a uniform probability distribution and

compute a prestige score during indexing. Alternatively, we can assign the normalised

content scores, merging thus the content and link analysis dynamically query-by-query.

We get promising results by evaluating the effectiveness of the Absorbing Model

with respect to the test collections used in TREC10 topic relevance task (or ad-hoc task)

and TREC11 topic distillation and named page finding tasks. It has been observed in

the last two TREC conferences [13, 8] that these collections do not favour the applica-

tion of link analysis. However, our finding is controversial. While PageRank seems to

be largely detrimental to the retrieval effectiveness in both collections, we observed a

striking difference in the performance of the static application of the Absorbing Model

over the two collections. Only when relevance is defined by the ad hoc task, and not

by the topic distillation task, the Absorbing Model does not degrade with respect to the

content only analysis. This seems to indicate that the hypothesis on uniform distribution

is not adequate for the topic distillation task. The indication is confirmed by the dy-

namic application of the Absorbing Model only to the subgraph of a first pass top ranked

documents, a more stable and effective approach that outperforms content-only retrieval.

Finally, we evaluate the effectiveness of incorporating the anchor text of links where

we found that anchor text is effective only in the named page finding task.

The rest of this paper is organised as follows. In Section 2 we review related work

in the research area of link analysis and we introduce the basic properties of Markov

chains. The definition of the Absorbing Model follows in Section 3 and in Section 4 we

present the experiments we performed and the corresponding results. Section 5 closes
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with the conclusions we have drawn from this work and some points of interest which

require further examination.

2 Related work

In this section, we provide a brief overview of the related work in the field of link analysis

for Web Information Retrieval (Section 2.1) and a formal description of Markov chains

and their basic properties that we will use for defining the Absorbing Model (Sections

2.2, 2.3 and 2.4).

2.1 Link analysis for Web Information Retrieval

The Web is not the first context in which the analysis of interconnected documents has

been applied. Earlier, the analysis of the references of scientific publications has been

employed to estimate the impact factor of papers, or journals [11]. Other useful measures

resulting from analysis of citations are the bibliographic coupling and the co-citation

coupling [22]. Similar techniques have been proposed in the context of social sciences,

where, for example, Milgram [20] analysed the connections between people.

The rapid growth of the Web, together with the need to find useful resources resulted

in the requirement to detect quality resources, by estimating the authority of Web docu-

ments. The hyperlink structure provides the evidence for detecting the most authoritative

documents, by exploiting the latent knowledge put by the authors of documents when

they add hyperlinks to other documents. Two of the first methods proposed for link anal-

ysis on the Web are Kleinberg’s HITS algorithm [17] and Brin and Page’s PageRank

[5].

Kleinberg in HITS suggests that Web documents can be classified into two cate-

gories, namely the hubs and the authorities, which ideally form bipartite graphs. The

hubs are Web documents which point to many useful authority documents on a specific

topic, while the authorities are Web documents that are pointed by many hubs on the

same topic. Moreover, there is a mutual reinforcement relation between authorities and

hubs: good authorities are pointed by good hubs and good hubs point to many good au-

thorities. The algorithm works as follows: initially a set of Web documents is retrieved

by using a standard search engine and this set is extended by adding documents that are

pointed, or that point to the documents of the initial set. The adjacency matrix A of

the graph that corresponds to the extended set is created and the principal eigenvectors

of the matrices AAT and AT A are computed. The component of each document in the
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principal eigenvector of AAT corresponds to its hub weight, while its component in the

principal eigenvector of AT A corresponds to its authority value.

The second algorithm, namely PageRank, proposed by Brin and Page [5], is based on

the calculation of the invariant probability distribution of the Markov chain induced from

the Web graph and returns a global authority score for each indexed Web document. The

authority score of a document depends on the authority scores of the Web documents

that point to it, and it is calculated by an iterative process. However, the corresponding

Markov chain does not always guarantee the convergence of the process. For that, the

structure of the Web is altered in the following way. A link is added from every Web

document to each other. This transformation of the Web graph can be interpreted in the

following way: a random user that navigates in the Web has two possibilities at each

time; either to follow a link from the document that he is currently browsing, or to jump

to a randomly selected Web document and continue his navigation from that document.

The addition of this element of randomness results to a more stable algorithm [21] and

guarantees the existence of the invariant distribution of the corresponding Markov chain.

Recent proposals for link analysis methods follow a probabilistic approach to the

analysis of the Web documents structure. Cohn and Chang propose a method called

PHITS, which is mathematically equivalent to Hofmann’s Probabilistic Latent Semantic

Indexing [14], for calculating authority and hub scores for Web documents. Moreover,

Lempel and Moran introduce SALSA [18], a refinement of the HITS algorithm, where

instead of analysing one random walk, there are two Markov chains, one for the hubs and

one for the authorities. The random walk is performed by making at each point a step

forwards immediately followed by a step backwards in the Markov chains. Additional

refinements to the HITS algorithm are introduced by Borodin et al. [4].

Apart from the pure link analysis methods described above, there have been efforts

for the effective combination of content and link-based evidence. Bharat and Henzinger

refine HITS by incorporating the associated anchor text of the links in order to weight

each link [3]. Moreover, Chakrabarti and Chakrabarti et al. use the DOM tree repre-

sentation of Web documents to identify specific segments of documents about a single

topic, which they call microhubs [6, 7]. A modified version of PageRank is proposed by

Domingos and Richardson, where the links are weighted according to their similarity to

the query, resulting to a query dependent authority measure [24]. Another extension to

PageRank is introduced by Haveliwala for estimating a personalised authority measure

for documents [12]. Instead of calculating a single global PageRank score for each doc-

ument, different PageRank biased on specific topics are calculated and the final authority

measure of documents is the combination of those PageRank scores.

Other methods, which do not extend directly HITS or PageRank, have been proposed
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for the combination of content and link-based evidence. Silva et al. employ Bayesian

networks model and combine evidence from the content and the link structure of doc-

uments [26]. Savoy and Picard use a spreading activation mechanism where a fraction

of the retrieval status values propagate through links [25], and Jin and Dumais propose

a similar approach taking into account the similarity of documents, the similarity of the

anchor text of links to the query and the prestige scores of documents [15].

2.2 Markov Chains

Since the Absorbing Model is a link analysis method that models the Web as a Markov

chain, we introduce the concept of Markov chains and their basic properties. The nota-

tion used in this section and in the rest of the paper is similar to that of Feller [10].

Each document is a possible outcome of the retrieval process. Therefore we assume

that documents are orthogonal, or alternative states dk, which have a prior probability

pk to be selected by the system. We associate with each pair of documents (di, dj) a

transition probability pij = p(dj|di) of reaching the document dj from the document di.

This conditional probability maybe interpreted as the probability of having the document

dj as outcome with the document di as evidence.

Both priors and transition probabilities must satisfy the condition of a probability

space, which is:
∑

k

pk = 1 (1)

∑

j

pij = 1 (2)

Condition (2) imposes that each state di must have access to at least one state dj for some

j, where it is possible that i = j.

It is useful to express the priors as a row vector and the transition probabilities as a

row-by-column matrix, so that we can have a more compact representation of probabili-

ties for arbitrary sequences of states:

P =
[

pk

]

(3)

M =
[

pij

]

(4)

Then, let Mn be the matrix product rows-into-columns of M with itself n-times

Mn =
[

pn
ij

]

(5)
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In order to have a Markov chain, the probability of any walk from a state di to a state

dj depends only on the probability of the last visited state. In other words, the probability

of any sequence of states (d1, . . . , dn) is given by the relation:

p(d1, . . . , dn) = p1

n−1
∏

i=1

p(di+1|di) (6)

where p1 is the prior probability of document d1.

In terms of matrices, the element pn
ij of the product Mn corresponds to the probability

p(di, . . . , dj) of reaching the state dj from di by any random walk, or sequence of states

(di, . . . , dj) made up of exactly n states.

If pn
ij > 0 for some n then we say that the state dj is reachable from the state di. A

set of states is said closed if any state inside the set can reach all and only all other states

inside the set. The states in a closed set are called persistent or recurrent states, since a

random walk, starting from the state di and terminating at state dj, can be ever extended

to pass through di again. Indeed, from the definition of the closed set, the probability

pm
ji > 0 for some m. If a single state forms a closed set, then it is called absorbing,

since a random walk that reaches this state cannot visit any other states anymore. A state

which is not in any closed set is called transient. A transient state must reach at least one

state in a closed set and thus there is a random walk, starting from the transient state di,

that cannot be ever extended to pass through di again.

One of the most useful properties of Markov chains is the decomposition character-

isation. It can be shown that all Markov chains can be decomposed in a unique manner

into non-overlapping closed sets C1, C2 . . . and a set T that contains all and only all the

transient states of the Markov chain. If this decomposition results into a single closed

set C, then the Markov chain is called irreducible.

For a better understanding, we give an example of the above definitions. In Figure 1,

the directed graph may be interpreted as the Markov Chain corresponding to a few Web

documents with the arcs representing the links between documents and consequently the

transitions between the states in the Markov chain. According to the terminology given

above for Markov chains, states 1, 3, 4, 5 form a closed set and they are persistent states.

State 2 is a transient state. Therefore this Markov chain is not irreducible, as it can be

decomposed in a non–empty set of transient states and a single set of persistent states.

Moreover, if the arc from state 5 to state 3 is replaced by an arc from 5 to itself, then

state 5 becomes an absorbing state.
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2.3 Classification of states

The probability of reaching the state dj from any initial state by any random walk w =

(di, . . . , dj) is thus, according to (6):

∑

i

∑

w

p(di, . . . , dj) =
∞
∑

n=1

∑

i

pip
n
ij =

∑

i

pi(
∞
∑

n=1

pn
ij) (7)

Therefore, the unconditional probability of reaching a state dj by any random walk is

the limit for n → ∞ of the sum over n of the j-th element of the vector P ·Mn, which

is the product rows-into-columns of the vector P and the matrix M n.

However, in a Markov chain the limit lim
n→∞

∑

n

pn
ij does not always exist, or it can

be infinite. The limit does not exist when there is a state di such that pn
ii = 0 unless n

is a multiple of some fixed integer t > 1. In this case the state di is called periodic.

Periodic states are easily handled: if t is the largest integer which makes the state di

periodic, then it is sufficient to use the probabilities pt
kj as new transition probabilities

p′kj. Therefore, with these new transition probabilities, p′
n
ii will be greater than 0 and the

periodic states dj become aperiodic. Hence, we may assume that all states in a Markov

chain are aperiodic [10].

Recurrent states in a finite Markov chain have the limit of pn
ij greater than 0 if the

state dj is reachable from di, while for all transient states this limit is 0:

lim
n→∞

pn
ij = 0 if dj is transient (8)

lim
n→∞

pn
ij > 0 if dj is persistent and dj is reachable from di (9)

In an irreducible finite Markov chain all nodes are persistent and the probability of

reaching them from any arbitrary node of the graph is positive. In other words, lim
n→∞

pn
ij >

0 and lim
n→∞

pn
ij = lim

n→∞
pn

kj = uj for all i and k. This property makes an irreducible Markov

chains to possess an invariant distribution, that is a distribution uk such that

uj =
∑

i

uipij and uj = lim
n→∞

pn
ij (10)

In the case of irreducible Markov chains, the vector P of prior probabilities does not

affect the unconditional probability of entering an arbitrary state since all rows are iden-

tical in the limit matrix of Mn. Indeed:

lim
n→∞

∑

i

pip
n
ij = lim

n→∞

∑

i

pip
n
j =

(

∑

i

pi

)

· uj = uj (11)

Because of this property, the probability distribution uj in a irreducible Markov chain is

called invariant or stationary distribution.
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If the distribution limn→∞

∑

i pip
n
ij is taken to assign weights to the nodes, then it is

equivalent to the invariant distribution uj in the case that the Markov chain is irreducible.

More generally, if the Markov chain is not irreducible or does not possess an invariant

distribution, then limn→∞

∑

i pip
n
ij can be still used to define the distribution of the node

weights. However, it will depend on the prior distribution pi.

2.4 Modelling the hyperlinks of the Web

In this section we present formally how Markov chains can be applied to model hyper-

links on the Web.

Let R be the binary accessibility relation between the set of documents, namely

R(di, dj) = 1, if there is a hyperlink from document di to document dj, and 0 otherwise.

Let o(i) be the number of documents dj which are accessible from di:

o(i) = |{dj : R(i, j) = 1}| (12)

The probability pij of a transition from document di to document dj is defined as follows:

pij =
R(i, j)

o(i)
(13)

If we model the Web graph with a stochastic matrix defined as in (13), then we may

encounter the following difficulties in using a Markov chain for obtaining a prestige

score for Web documents:

1. There are Web documents that do not contain any hyperlinks to other documents.

In this case, condition (2) is not satisfied. Therefore, we cannot define a Markov

chain from the probability transition matrix.

2. Even if the condition (2) is satisfied, all transient states have lim
n→∞

pn
ij = 0, in-

dependently from the number of links that point to these states. Therefore this

limit cannot be used as a prestige score, since only persistent states would have a

significant prestige score.

There are two possible ways to overcome the two previous problems:

1. We link all states by assigning a new probability p∗ij 6= 0 in a suitable way, such

that |p∗ij − pij| < ε. In this way all states become persistent. In other words the

Web graph is transformed into a single irreducible closed set, namely the set of all

states. Therefore, all states receive a positive prestige score. This approach is used

in PageRank, where the assumed random surfer may randomly jump with a finite

probability to any Web document.
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2. We extend the original graph G to a new graph G∗. The new states of the extended

graph G∗ are all and only all the persistent states of the graph G∗. The scores

relative to all states of the original graph, whether transient or persistent, will be

uniquely associated to the scores of these persistent states of the new graph.

In the following section, we explore the second approach in order to overcome the

above mentioned problems and define the Absorbing Model.

3 The Absorbing Model

The Absorbing Model is based on a simple transformation of the Web graph. We project

the original graph G onto a new graph G∗ whose decomposition is made up of a set of

transient states T = G and a set Ci, . . . , Cn of absorbing nodes, that is a set of closed

sets containing only one element. The states Ci, . . . , Cn are called the clones of G and

they are uniquely associated to the states of the graph G. Any state in G has access to

its clone but not to other clones. Since the clones are absorbing nodes they do not have

access to any state except to themselves. The Absorbing Model is introduced formally

as follows:

Definition 1 Let G = (D, R) be the graph consisting of the set D of the N documents di

and the binary accessibility relation R representing the hyperlinks between documents.

The graph G is extended by introducing N additional nodes dN+i, i = 1, . . . , N , called

the clone nodes. These additional nodes are denoted as: dN+i = d∗i . The accessibility

relation R is extended in the following way:

R(d∗i , d) = R(d, d∗i ) = 0, d 6= d∗i , i = 1, . . . , N except for:

R(di, d
∗

i ) = 1

R(d∗i , d
∗

i ) = 1

In Figure 1, a graph representing five Web documents is shown. According to the

Absorbing Model’s definition, this graph is transformed into the graph of Figure 2.

Hence, with the introduction of the clones, all the original states become transient,

while the only closed sets are the singleton sets that contain each clone d∗k. Moreover,

one of the properties of the Absorbing Model is that the self-loops in the set of transient

nodes do not influence the limits of the matrix Mn. The transition probabilities in the

original graph are updated accordingly:

pij =
R(i, j)

o(i) + 1
(14)
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Figure 1: The Markov Chain representing the web graph

Then, for the nodes of the original graph we have:

pn
jk → 0 (k = 1, . . . , N) (15)

whilst for the absorbing states we have:

pn
jk → ujk k = N + 1, . . . , 2N (16)

where ujk stands for the probability that a random walk starting from dj passes through

dk.

The score of a state dk is then given by the unconditional probability of reaching its

clone state d∗k, that is:
∑

j

pjujk∗ (17)

where k∗ = k + N and k = 1, . . . , N .

While in PageRank the rows in the limiting matrix are equal, in the Absorbing Model

they are in general different, that is uik 6= ujk for different i, j, so that the limiting matrix

does not correspond to an invariant distribution. Hence, the row vector P of priors can

significantly modify the score of a document. We therefore define the prior probabilities

P into two different ways:

Definition 2 Static mode priors: we assume that the prior probability of selecting doc-

ument dk is uniformly distributed:

pk =
1

2N
(18)

We should note that the number 2N refers to the total number of states of the new graph

G∗, that is the total number of documents plus the total number of their corresponding

clone states.
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Figure 2: The extended Markov Chain including the clone states

Definition 3 Dynamic (or query dependent) mode priors: Given a query q, we create

the set B of the |B| top-ranked documents, where each document dk has a score s(dk|q).

In this case, the prior probability of selecting the document dk is defined as:

pk =
s(dk|q)

2 ∗
∑

d∈B s(d|q)
(19)

Depending on the way the prior probabilities are defined, we have two extensions of

the Absorbing Model, which are described in the following sections.

3.1 Static Application of the Absorbing Model (SAM)

When we employ the static mode priors, the Absorbing Model score s(dj) of a document

dj is given from (17) and (18) as follows:

s(dj) =
∑

i

piuij∗ =
∑

i

piuij∗ =
∑

i

1

2N
p∞ij∗ ∝

∑

i

p∞ij∗ (20)

where j∗ = j + N .

In other words, the Absorbing Model score s(dj) for a document dj is the probability

of accessing its clone node d∗j by performing a random walk, starting from any state with

equal probability.
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To combine this link structure based score s(dj) with the score from content analysis

s(dj|q), given query q, we employ the Cobb-Douglas utility function:

U = Ca · Lb, a + b = 2 (21)

This utility function has been applied successfully in economics to model the combina-

tion of different types of input, such as the capital and the labour. In our case, we assume

that the first input is the score from content analysis s(dj|q) and the second input is the

Absorbing Model score s(dj), and the parameters a, b are both set equal to 1. Conse-

quently, the Static Absorbing Model score (SAM), where the two scores are combined,

is given by:

RSV (dj) = s(dj|q) · s(dj) (22)

3.2 Dynamic Application of the Absorbing Model (DynAMoRANK)

Another way to consider link analysis is to apply it dynamically only on the retrieved

results of a first pass ranking. In this approach, the score is influenced from both the

ranking and the link structure of the results. From (17) and (19), given a query q, we

have for the set B of the |B| top ranked documents:

s(dj) =
∑

i

piuij∗ =
∑

i

s(dk|q)

2 ∗
∑

d∈B s(d|q)
p∞ij∗ (23)

where j∗ = j + N .

The score s(dj) is a combination of both the evidence from the content analysis as

well as from the link structure analysis and we set:

RSV (dj) = s(dj) (24)

We consider the application of link analysis in this setting as an optimisation of the

results returned from the first pass retrieval. Under this assumption, we ignore the outgo-

ing links from the set A of the |A| top ranked documents, before applying link analysis,

where 0 ≤ |A| ≤ |B|. In this way, we ensure that documents in set A only receive

authority from the rest of the documents in set B − A. This additional restriction is

justified by the fact that the evidence from the link structure is weaker than the evidence

from the content of documents [9]. Therefore, we do not want to change dramatically

the ranking of the first pass retrieval. We should note that the introduction of the set A

does not affect in anyway the formalism of the dynamic application of the Absorbing

Model, which we call DynAMoRANK.
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4 Experiments and Results

In order to evaluate the effectiveness of the Absorbing Model in both its modes of appli-

cation, we performed a set of experiments using standard TREC Web test collections. In

the following sections, we describe the experiments and we provide an analysis of their

results.

4.1 Description of experiments

For testing the Absorbing Model, we use the test collections of the Web track of TREC10

and TREC11. In particular, we employ the WT10g test collection for the topic relevance

task for TREC10 and the .GOV test collection for the topic distillation and named entity

tasks for TREC11. The former set of documents is a test collection that consists of

1.69 million documents [2], which were crawled in 1997. The collection comes with 50

queries for the topic relevance task, which involves finding documents about the topic

of the query. The latter data set, namely the .GOV collection, is a recent crawl of the

.GOV domain, that consists of 1.25 million documents. It comes with 50 topics for the

topic distillation task, which is about finding documents that would serve as entries in a

bookmark list for the topic of the query, or that would be linked from a portal about the

the topic of the query. For the named entity finding task, there are 150 queries, for which

we are looking for a single document that corresponds to what the user is searching for.

In the following tables, each row is labelled with the name of the collection used for the

corresponding experiments.

The indexing of the two test collections involves the removal of stop words listed in

a standard stop word list [27]. Moreover, Porter’s stemming algorithm [23] is applied to

both collections.

For the content analysis module, acting as a baseline, we use the probabilistic frame-

work of Amati and Van Rijsbergen [1]. We apply two term weighting functions, namely

I(ne)B2 and PL2 as introduced in [1]. For some of the experiments, the documents are

augmented with the anchor text of their incoming links.

For the analysis of the link structure of the test collections, we take into account

only the hyperlinks between documents in different domains. A link is used if the do-

main name of the URL of the source document is different than the domain name of

the URL of the destination document. We apply SAM and DynAMoRANK to the topic

relevance task for TREC10 and to the topic distillation task for TREC11. Moreover,

DynAMoRANK is applied to the named page finding task for TREC11. For the named

page finding task, the values used for |B| and |A| are set experimentally to 10 and 5
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Notation reference

I(ne)B2 Content only run using

the weighting function I(ne)B2

PL2 Content only run using

the weighting function PL2

+ Anchors The anchor text is added to the

main body of documents

SAM Static Absorbing Model

PR PageRank applied in a static

mode, using the utility function (21)

DynAMoRANK Dynamic Absorbing Model

dPRu PageRank applied in a dynamic

mode, using the utility function (21)

dPRb PageRank applied in a dynamic mode,

using the content retrieval scores to alter

the transition probability matrix

Table 1: Description of the notation used in tables.

respectively.

PageRank is also compared to the Absorbing Model in both the static and the dy-

namic setting, although originally PageRank is designed for application in the static

setting. In correspondence with SAM, the static PageRank scores are combined with

the content retrieval scores using the utility function (21). For comparison with Dy-

nAMoRANK, the dynamic PageRank scores are computed only for the top |B| docu-

ments of a first pass retrieval by ignoring the outgoing links from the top ranked |A|

documents. Then, we have two options for combining the PageRank scores with the

content retrieval scores. The first is to apply the utility function (21). Alternatively, we

include the content retrieval scores in the transition probability matrix, similarly to the

approach taken by Haveliwala [12]. The values used for |B| and |A| for the dynamic

link analysis are set experimentally to 50 and 20 respectively.

For enhancing the readability of results, we include Table 1 where the notation used

is connected back to the description of experiments.
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Content-only and anchor text experiments

I(ne)B2 I(ne)B2 + Anchors

Precision at 10 documents retrieved

WT10g 0.3720 0.3800

.GOV 0.2408 0.2408

Mean Average Precision

WT10g 0.2105 0.2101

.GOV 0.1990 0.1932

Table 2: Comparison of content only experiment with respect to anchor text analysis.

Content-only and anchor text experiments

PL2 PL2 + Anchors

Precision at 10 documents retrieved

WT10g 0.3660 0.3560

.GOV 0.2694 0.2510

Mean Average Precision

WT10g 0.2090 0.2065

.GOV 0.2041 0.1894

Table 3: Comparison of content only experiment with respect to anchor text analysis.

4.2 Results and Discussion

We use two different TREC test collections, which were designed having in mind differ-

ent types of tasks. Indeed, the topic relevance task for the WT10g collection is closer to

a classic ad-hoc task, than the topic distillation task for the .GOV collection. The latter

resembles more what the actual users are expecting from a search engine as a result. For

this reason, it makes more sense to use as a measure of effectiveness the precision at

10 retrieved documents, since Web users tend to browse only the top ranked documents

returned by search engines.

The conducted experiments show that the selection of a weighting function affects

the precision of the results. From Tables 2 and 3, it appears that the weighting function

I(ne)B2 performs better than PL2 when it is used for retrieval from the WT10g collec-

tion, while the weighting function PL2 is more suitable for use with the .GOV collection.

This is an important issue when there are more than one available weighting functions

and we do not know which is the most suitable. For this reason, methods for assessing

automatically the effectiveness of a retrieval weighting method, such as the one pro-
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Static link analysis models

I(ne)B2 SAM PR PL2 SAM PR

Precision at 10 documents retrieved

WT10g 0.3720 0.3700 0.0780 0.3660 0.3700 0.0840

.GOV 0.2408 0.0082 0.0653 0.2694 0.0082 0.0796

Mean Average Precision

WT10g 0.2105 0.2040 0.0196 0.2090 0.2027 0.0181

.GOV 0.1990 0.0187 0.0338 0.2041 0.0221 0.0931

Table 4: Comparison of link models applied in static mode.

posed by Jin et al. [16], or by Manmatha et al. [19], may be useful in selecting the most

appropriate model for a first pass retrieval.

The use of anchor text exhibits different results when used in different tasks. As it

appears in Tables 2 and 3, for the topic relevance task for TREC10 and the topic distilla-

tion task for TREC11, augmenting the documents with the anchor text of the incoming

links seems to have a detrimental effect1. On the other hand, the anchor text proves to

be effective when it is used for the named page finding task of the .GOV collection. In

this case the average reciprocal precision increases significantly when the anchor text

is incorporated in the body of the documents (Table 7). For this task the use of anchor

text is even more effective than the application of pure link analysis: 0.654 w.r.t. 0.555

average reciprocal precision. We believe that the difference in retrieval effectiveness of

the same source of evidence is due to the inherent differences of the nature of the topic

distillation and the topic relevance compared to the named page finding task. The ef-

fectiveness of using anchor text for the first two tasks may increase if a more intelligent

method is employed for adding only the anchor text that is similar to the query.

A main point of the experiments performed is the evaluation of the effectiveness of

dynamic link analysis against static link analysis. It appears that DynAMoRANK and

dynamic PageRank (see Tables 5 and 6) are more robust approaches than their static

counterparts (see Table 4) for both the test collections we used and the weighting func-

tions we applied. For example, for the WT10g collection, for both weighting functions,

DynAMoRANK outperforms SAM with respect to the mean average precision: 0.2109

w.r.t. 0.2040 for I(ne)B2 and 0.2072 w.r.t. 0.2027 for PL2. Moreover, it is evident from

the same tables that the dynamically applied PageRank clearly outperforms the statically

applied one (dPRu and dPRb vs. PR).

1The precision at 10 documents, for which we get a slight improvement from 0.3720 to 0.3800 is not

the official measure of performance for the ad-hoc task for WT10g.
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Content Model: I(ne)B2

Baseline DynAMoRANK dPRu dPRb
Precision at 10 documents retrieved

WT10g 0.3720 0.3700 0.2640 0.3700

.GOV 0.2408 0.2490 0.1878 0.2490

Mean Average Precision

WT10g 0.2105 0.2109 0.1588 0.2108

.GOV 0.1990 0.2035 0.1265 0.2045

Table 5: Comparison of link models applied in dynamic mode with I(ne)B2 as content

model.

Content Model: PL2

Baseline DynAMoRANK dPRu dPRb
Precision at 10 documents retrieved

WT10g 0.3640 0.3640 0.2620 0.3620

.GOV 0.2694 0.2776 0.1939 0.2694

Mean Average Precision

WT10g 0.2083 0.2072 0.1545 0.2065

.GOV 0.2041 0.2047 0.1335 0.2040

Table 6: Comparison of link models applied in dynamic mode with PL2 as content

model.

Looking into the results in Table 4, the performance of SAM is a priori intriguing.

For instance, for the WT10g collection, SAM is robust for both weighting functions:

0.2040 w.r.t. 0.2105 for I(ne)B2 and 0.2027 w.r.t. 0.2090 for PL2. However, for the

.GOV collection, we notice that SAM has a clear detrimental effect. This result might

suggest that the uniform distribution hypothesis underlying SAM works only for ad-hoc

tasks (i.e. WT10g), while a first ranking based prior distribution seems to be necessary

for the topic distillation task.

The comparison of the dynamic link analysis approaches provides us with interest-

ing observations. From the Tables 5 and 6 it appears that DynAMoRANK outperforms

both dPRu and dPRb, with an exception for the case of average precision for the .GOV

collection when dPRb is used with I(ne)B2. However, the nature of the topic distilla-

tion task for .GOV suggests that we are more interested in the precision at 10 retrieved

documents.
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5 Conclusions

In this work we introduce a new approach for analysing the link structure of the Web

and improving effectiveness of Web IR. The main problems of link analysis methods,

based on random walks on the Web graph, is that the resulting scores are not always

meaningful, due to the nature of the Web. For example, it is possible that some Web

documents do not have any outgoing links. The approach taken by Brin and Page in

PageRank [5] is to link every document to every other document, by assuming that there

is a random surfer that decides at any time whether he will continue following links

from the document he is visiting, or he will jump to a randomly selected document. This

step is necessary to transform the corresponding Markov chain to an irreducible Markov

chain, so that the scores of documents exist and they are non-zero.

We propose the Absorbing Model, in which we take a different approach in defining

the corresponding Markov chain. We introduce a set of new states in the Markov chain,

in a one-to-one correspondence with the states in the original Markov chain. This trans-

formation results into a structure where the prior probabilities of selecting a document

influence the probability of accessing a node. We exploit this aspect of the model in

order to combine content and link analysis in a well-founded way.

The experiments we conducted show that DynAMoRANK, that is the dynamic ap-

plication of the Absorbing Model, is a robust model for combining in a principled way

evidence from content and link analysis. It is tested on two Web test collections, namely

the WT10g and the .GOV from TREC10 and TREC11 respectively. The results show

that DynAMoRANK outperforms PageRank under the same experimental settings and

that it improves precision over the content-only baseline (0.2776 w.r.t. 0.2694 precision

at 10 documents). This is quite important if we consider the fact that both these test col-

lections do not favour the application of link analysis, as it has been noted in TREC10

[13] and TREC11 [8]. Thus, the results provide evidence that support the usefulness of

I(ne)B2 DynAMoRANK I(ne)B2 + Anchors

Average Reciprocal Precision

.GOV 0.552 0.555 0.654

Pages found in top 10 documents

.GOV 107 (71.3%) 107 (71.3%) 128 (85.3%)

Pages not found in top 50 documents

.GOV 23 (15.3%) 22 (14.7%) 14 (9.3%)

Table 7: Named entity finding task with I(ne)B2.
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link analysis as a method for increasing precision among the top ranked documents, a

still open issue for the field of Web information retrieval.

Finally, the Absorbing Model is a flexible and theoretical approach, where the com-

bination of content and link analysis is achie-ved by using the priors, without increasing

the computational cost. For ad-hoc retrieval, the use of the uniformly distributed priors

is robust, while the topic distillation task is topic-driven, which might suggest that the

priors affect the retrieval effectiveness. Further investigation is required to relate the

nature of the task to the importance of the priors. The results show that the Absorb-

ing Model is a promising method that could improve precision over the content-only

baseline experiments.
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