
S. McDonald and J. Tait (Eds.): ECIR 2004, LNCS 2997, pp. 394–408, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

Performance Analysis of Distributed Architectures to 
Index One Terabyte of Text 

Fidel Cacheda1, Vassilis Plachouras2, and Iadh Ounis2 

1 Departament of Information and Communication Technologies, University of A Coruña 
 Facultad de Informática, Campus de Elviña s/n, 15071 A Coruña, Spain 

fidel@udc.es 
2 Department of Computing Science, University of Glasgow 

Glasgow, G12 8QQ, UK 
{vassilis, ounis}@dcs.gla.ac.uk 

Abstract. We simulate different architectures of a distributed Information 
Retrieval system on a very large Web collection, in order to work out the 
optimal setting for a particular set of resources. We analyse the effectiveness of 
a distributed, replicated and clustered architecture using a variable number of 
workstations. A collection of approximately 94 million documents and 1 
terabyte of text is used to test the performance of the different architectures. We 
show that in a purely distributed architecture, the brokers become the bottleneck 
due to the high number of local answer sets to be sorted. In a replicated system, 
the network is the bottleneck due to the high number of query servers and the 
continuous data interchange with the brokers. Finally, we demonstrate that a 
clustered system will outperform a replicated system if a large  number of query 
servers is used, mainly due to the reduction of the network load. 

1   Introduction 

Retrieval systems based on a single centralized index are subject to several 
limitations: lack of scalability, server overloading and failures [6]. Therefore, given 
these facts, it seems more appropriate to turn to the distributed Information Retrieval 
(IR) systems approach for the storage and search processing. 

In a distributed search environment, there are usually two basic strategies for 
distributing the inverted index over a collection of query servers. One strategy is to 
partition the document collection so that each query server is responsible for a disjoint 
subset of documents in the collection (called local inverted files in [13]). The other 
option is to partition based on the index terms so that each query server stores 
inverted lists corresponding to only a subset of the index terms in the collection 
(called global inverted files in [13]). The study in [15] indicates that the local inverted 
file organization uses system resources effectively, provides good query throughput 
and is more resilient to failures. 

From the database point of view, a distributed information retrieval system could 
follow a single database model or a multi-database model [4]. In the single database 
model, the documents are copied to a centralized database, where they are indexed 
and made searchable. In a multi-database model, the existence of multiple text 

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595 842 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Ja
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Error
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue true
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice



Performance Analysis of Distributed Architectures to Index One Terabyte of Text         395 

 

databases is considered explicitly, and at the same time, each database could have the 
inverted index distributed. 

This work is a case study of different architectures for a distributed information 
retrieval system on a very large Web collection. The SPIRIT collection (94,552,870 
documents and 1 terabyte (TB) of text) [10] is used for the simulation of the 
distributed IR system. We partition the collection of documents using a local inverted 
file strategy, and we test the response times for different configurations. Although the 
timings obtained depend on the specific system simulated [1], the trends and 
conclusions should be independent of the system used. In this way, our study works 
out the required resources and the best architecture to handle a very large collection of 
data, like SPIRIT. We believe that this work is a step along the recent trend in 
building very large collections for Web IR, like the TREC Terabyte track1 initiative.  

The improvements in the performance of a single database model are examined in 
a distributed and replicated system. Also, the effects of a multi-database model are 
tested through a clustered system. 

We start by presenting the related work. In Section 3, we describe the simulation 
models used (analytical, collection and distributed models). Next, we describe the 
simulations performed for the different architectures: distributed, replicated and 
clustered system, and the results obtained. Finally, the main conclusions are 
presented. 

2   Related Work 

The work on architecture performance is the most directly related to this paper. 
Several articles [2], [5], [12] analyze the performance of a distributed IR system using 
collections of different sizes and different system architectures. Cahoon and 
McKinley in [3] describe the result of simulated experiments on the distributed 
INQUERY architecture. Using the observed behaviour for a mono-server 
implementation, they derive the performance figures for a distributed implementation, 
proving it to be scalable. 

The previous work for distributing the inverted index over a collection of servers is 
focused on the local and global inverted files strategies [13], [15], showing that the 
local inverted file is a more balanced strategy and a good query throughput could be 
achieved in most cases. 

Our work is focused on the performance evaluation of several distributed 
architectures using a massive cluster of workstations (up to 4096) and identifying the 
limitations of each model. The novelty of this work relies on the size of the collection 
represented (1TB of text) and the large number of workstations simulated. This work 
is especially related to [3] and [13], but it differs mainly in three points. First, the 
probabilistic model is considered and therefore, disjunctive queries are used in the 
system (without the reduction in the answer set provided by the conjunctive 
operations). Second, a simple analytical model is developed initially for a single-
database/single-server environment (similarly to [13]), and this will be the basis for 
the simulation of the distributed IR systems, composed of multiple query servers 
(similarly to [3]). Third, initially the results of the analytical model are tested using 
                                                           
1  http://www-nlpir.nist.gov/projects/terabyte/ 



396         F. Cacheda, V. Plachouras, and I. Ounis 

 

the TREC WT10g collection and the set of the topic relevance queries from TREC10 
[7]. Next, a document collection of 1TB and its queries are modelled in order to 
obtain more generic results. 

3   Simulation Model 

To explore the performance of different architectures for a distributed IR system, we 
implemented a discrete event-oriented simulator using the JavaSim simulation 
environment [11]. 

The simulation model defined in this work is divided into three parts. Initially an 
analytical model has been developed for the simulation of a simple IR system based 
on the WT10g collection and its set of real queries using a single server. Next, a 
collection model is defined to simulate, in general, the behaviour of any collection of 
documents and in particular, a new collection composed of 94 million documents and 
1TB of text. Finally, the basic IR model is extended to a distributed IR model defining 
the behaviour of a local area network of computers and modelling the tasks of the 
query brokers and the query servers. 

3.1 Analytical Model 

In this section, we describe a simplified analytical model for the querying process in 
the IR system described in [1], using the WT10g collection and the set of queries used 
for TREC10 [7]. This analytical model is similar to the one described in [13]. 

A series of experiments were carried out to identify and estimate the basic 
variables and critical parameters of the analytical model. The notation for these 
variables and parameters is provided next: 

 
qi: vector of keywords for the ith query. 
ki: number of keywords in query qi. 
dk: number of documents of the inverted list for keyword k. 
ri: number of results obtained in query qi. 
tc1: first coefficient for the time to compare two identifiers and swap them. 
tc2: second coefficient for the time to compare two identifiers and swap them. 
ti: initialisation time, including memory allocation and output display. 
ts: average seek time for a single disk. 
tr: average time to read the information about one document in an inverted list 

and do its processing (seek time is excluded). 
ti: total time (in milliseconds) to complete processing of the query qi. 
 
Once the query server receives the query vector qi for processing, it reads from disk 

the inverted lists associated with the ki keywords, whose length is given by dk. Then 
the inverted lists are merged and sorted to form the answer set whose length is given 
by ri. Previous works [13] have modelled this using a linear relationship, but from our 
experiments, a logarithmic model seems to fit more accurately as the number of 
results increases (coefficients tc1 and tc2). Hence, the time to merge and sort n results 



Performance Analysis of Distributed Architectures to Index One Terabyte of Text         397 

 

(tc) is calculated as: )ln(21 ntcntctc ×+×= (versus the linear model used in [13] 

ntctc ×= 1 ). 

The processing of a query is divided into four phases: an initialization phase, 
seeking disks, reading the inverted lists from disk and assigning weights to 
documents, and obtaining the answer and ranking the results. Therefore, the 
processing time for a query qi is ti, given by: 

∑
∈

×+×+×+=
iqk irtctrkdtsiktiit .  

In this analytical model, the parameters dk and ri have to be estimated accurately. 
We evaluate the accuracy of the estimation by processing the topic relevance queries 
from TREC10’s Web track with a real IR system [1] in order to obtain the exact 
number of results for each query and the exact number of documents associated with 
each of the inverted lists retrieved. 

The accuracy of the analytical model was confirmed comparing the response times 
of the real IR system for the queries number 501 to 550 from the WT10g collection 
(the parameter values used are: ti=1400ms, ts=0.03ms, tr=4.0208µs, tcs, tc1=0.000131, 
tc2=0.000096; qi, ki, dk, ri depend on the collection modelled or simulated, as described 
in the next section). 

3.2 The Spirit Collection Model 

The basic analytical model defined for the WT10g collection will be extended to work 
with synthetic databases and queries. The objective is to simulate the so-called 
SPIRIT collection, composed of approximately 94 million Web documents and 1TB 
of text, although no queries and relevant assessments exist for the moment [10]. We 
divide this collection in 72 sub-collections and we use the statistical information 
(vocabulary size, document size, etc.) of one of them to model the whole collection. 

Document Model 
For the document model, we first study the main parameters of one of the sub-
collections, and using this as a basis, the values for the whole SPIRIT collection are 
estimated. In Table 1, we provide the definition for the parameters considered. 

 

Table 1. Parameters for the document model. The real values were obtained from a SPIRIT 
subcollection and the estimated values represent the whole SPIRIT collection 

Parameter Real values Estimated values Description 
D 1,221,034 94,552,870 The number of documents 
W 456 456 Average words per document 
T 4,301,776 73,689,638 Total words in V, i.e. T = |V| 

F(w) Z1(w) Z2(w) Pr(word = w) 
 
 



398         F. Cacheda, V. Plachouras, and I. Ounis 

 

The first column describes the parameters that represent a database of documents. 
The database consists of a collection of D documents. Each document is generated by 
a sequence of W independent and identically distributed words. V represents the 
vocabulary, where each word is uniquely identified by an integer w in the range 1 ≤ w 
≤ T, where T = |V|. The probability distribution F describes the probability that any 
word appears and, for convenience, is arranged in decreasing order of probability. 

The second column of the table represents our base case scenario and the values 
are obtained from one fraction of the SPIRIT collection. To define a specific 
probability distribution Z1 of F, a distribution is fitted to the rank/occurrence plot of 
the vocabulary, and then normalized to a probability distribution. The regression 
analysis performed confirms that the quadratic model fits better the real distribution 
(R = 0.99770) versus the linear model representing the Zipf’s law (R = 0.98122). The 
quadratic model is similar to Zipf’s, although in previous works [15], it has proved to 
match the actual distribution better. Given the quadratic fit curve, the form of the 
probability distribution Z1(w) is obtained from the quadratic model, divided by a 
normalisation constant [15]. 

The third column of Table 1 shows the values for the parameters of the whole 
SPIRIT collection. The number of documents in the collection is 94,552,870. The 
average number of words per document is supposed to remain stable. Therefore, the 
same value as the base case was chosen. 

The size of the vocabulary of a collection of documents matches the Heaps law [8], 
with K = 4.60363 and β = 0.6776. Therefore, an approximation of 73,689,638 unique 
terms for the whole collection is obtained. 
Finally, a different probability distribution is provided for the whole collection. Given 
the quadratic fit curve previously described, a new normalization constant is defined 
for the new vocabulary size (Ө = 4.294476 × 108). 

Query Model 
A query is a sequence of terms (t1,…,tk) generated from K independent and identically 
distributed trials from the probability distribution Q(t). Actually, in our simulation 
study the number of terms is selected uniformly between 1 and 4 terms per query. In 
Table 2 a description of each parameter and the base values chosen are presented. 

The most realistic query model is the skewed query model [9], where Q is 
modelled assuming that the probability of a term occurring in a query is proportional 
to that term’s frequency in vocabulary. The probability distribution Q(t) for the 
skewed query models is: (where C represents a normalization constant) 

suand
Tsu

sTi
iZCwhere

otherwise

TsutsTiftZC
tQ 2

)(
)(1

0

)()(
)( ≥∑

−

=
×=

−≤≤×
=




. 

The parameters u and s affect the probability that a term appears in a query. As u 
decreases, the probability of choosing a word of high rank increases. Words of high 
rank are highly repeated in the documents of the collection. Therefore, if u is too 
small, the queries will retrieve a large fraction of the documents. On the other hand, if 
u is too large, the answer sets will be too small [9]. The parameter s is introduced to 
avoid the effect of the first words in the rank, i.e. stopwords, which increase 
excessively the number of results obtained. As s increases more words from the top 



Performance Analysis of Distributed Architectures to Index One Terabyte of Text         399 

 

rank are considered to be stopwords, and therefore are not used as query terms. In all 
our simulations the values for these parameters are: u = 0.01 and s = 0.00007. 

Table 2. Parameters for the query model 

Parameter Value Description 
K [1-4] The number of terms per query 

Fq(t) Q(t) Pr(term = t) 
u  The fraction of T used in the query terms 
s  The fraction of T skipped for the query terms 

 
At certain points in the simulation, we will need to know the expected size of an 

inverted list and the expected size of an answer set. Let us assume a query with terms 
t1,…, tk that is executed in a collection (or sub-collection) of documents of size 
Documents. If we are considering the whole collection Documents = D, but in a 
distributed environment, Documents corresponds to the number of documents covered 
by each of the distributed indices. So, the number of documents of an inverted list for 

term ti will be [15]: ]))(1(1[ W

itZDocuments −−× . 

Consequently, the expected size of the answer set for a query with terms t1,…,tk 
(supposing a disjunctive query) is: 

]))(1())1(1(1[ WW

ktZtZDocuments −××−−× … .  

In order to test the accuracy of the described SPIRIT document collection, a 
simulation was performed to replicate the results for the WT10g collection, with the 
analytical model. The results showed that the simulations using the skewed query 
model produce on average similar response times as the real queries. Although the 
fluctuations of the real queries are not present in the skewed query model, this model 
can be considered quite accurate for the average response times. 

3.3 Distributed Model 

In a distributed IR system, the queries are stored on a global queue, which is 
controlled by one or more central brokers. Each broker will take one query and will 
send it to all the query servers through a network, in a local index organization [13]. 
Each query server then processes the whole query locally, obtains the answer set for 
that query, ranks the documents, selects a certain number of documents from the top 
of the ranking and returns them to the broker. The broker collects all the local answer 
sets and combines them into a global and final ranked set of documents. 

We assume that the system is operating in batch mode and that there are always 
enough queries to fill a minimum size query processing queue (by default, 50 
queries). 

The analytical model previously described is now extended to support a distributed 
IR system, with local index organization. Some new parameters are defined: 



400         F. Cacheda, V. Plachouras, and I. Ounis 

 

Table 3. Parameters for the distributed model 

Parameter Value Description 
LANOverhead 0.1ms Network overhead for each packet sent 
LANBandwidth 100Mbps Network speed (in bits per second) 

QuerySize 100 bytes Number of bytes sent from the broker to the query 
servers for each query request 

DocAnswerSetSize 8 bytes Number of bytes per document sent in the local 
answer sets (document id and document ranking) 

 
 dk,j: number of documents of the inverted list for keyword k on query server j. 
 ri,j: number of results obtained for query qi on query server j. 
 trmax: maximum number of top ranked documents returned as the local answer set 

(we consider the top 1000 documents only). 
 tri,j: number of documents from the top ranking in query qi returned as the local 

answer set for query server j. 
 ti,j: total time to complete the processing of query qi at query server j. 
 rqi,j: time to receive the query qi for the query server j. 
 rai,j: time to receive the local answer set for query qi from the query server j. 
Therefore, the time for the query server j to process the query qi is given by: 

∑
∈

×+×+×++=
iqk jirtctrjkdtsiktijirqjit ,,,, .  

The parameters dk,j and ri,j are estimated through the collection model parameters dk  
and ri  respectively, described in the previous section. 

As soon as the broker has received all the local results from all the query servers, it 
must combine them to obtain the final answer set. Therefore, the total processing time 
for query qi could be given by: 

∑ ×++=
j

tcjitrjira
ji

tit ,),max()
,

max( .  

The problem is that the parameters rqi,j and rai,j can not be estimated using an 
analytical model as they depend directly on the network load of each moment. 
Therefore, it is necessary to capture the behaviour of the network to represent 
accurately the response times of a distributed IR system. 

In our case, the system will contain a single LAN that will be simulated by a single 
FCFS infinite length queue. This LAN will manage all the messages sent by the 
brokers to the query servers and the answers from the query servers to the brokers. 
The service time for a request is calculated by the equation: 

( ) 100018/ ×−×+ dhLANBandwitgthRequestLendLANOverhea .  

The values and description for the parameters used in the simulation of the network 
are described in Table 3. The RequestLength parameter depends on the type of 
message sent. If a query is sent to the query servers, the value of the QuerySize 
parameter will be used. If the local answer for query qi set is sent from query server j 

to the broker, then the length of the packet will be: etSizeDocAnswerSjitr ×, . 



Performance Analysis of Distributed Architectures to Index One Terabyte of Text         401 

 

4   Simulation Results 

This section describes the results of several experiments developed using the 
simulation model described in the previous section. The objective is to determine 
different approaches for the distribution and replication of the collection using a 
bunch of query servers and compare the performance between the different 
configurations. 

All the simulations are based on the 1TB SPIRIT collection model [10]. The 
queries have been modelled using the skewed query model and following a worst case 
scenario: each query will retrieve on average approximately 8.4 million documents 
(9% of the whole collection). A batch of 50 queries is used to test the performance, 
and for each different configuration, 5 different simulations (with distinct initial 
seeds) are run, and the average values for the execution times are calculated for each 
query. 

Initially, a purely distributed system is examined. Next the effects of the 
replications are analyzed and then, we examine possible configurations of a clustered 
system (based on an asymmetric distribution and replications). 

4.1 Distributed System 

In this set of experiments, the collection of documents is distributed using the local 
index organization over N query servers, where N = 1, 2, 4, 8, 16, 32, 64, 128, 256, 
512, 768 and 1024. Initially, the number of brokers for the distributed IR system is set 
to one, and next is increased to 2, 3 and 4. The results are displayed in Fig. 1. 

 
 

1

2

3

4

Number of brokers

0 250 500 750 1000

Number of hosts

0.0

0.2

0.4

0.6

A
ve

ra
g

e 
th

ro
u

g
h

p
u

t 
(q

u
er

ie
s/

se
co

n
d

)

 

Fig. 1. Throughput for the simulation of a distributed IR system with local index organization 



402         F. Cacheda, V. Plachouras, and I. Ounis 

 

Table 4. Estimated time (mm:ss) to process 50 queries by the distributed system (3 brokers) 

Query servers Time Query servers Time 
1 46:01 64 02:00 
2 24:40 128 01:35 
4 13:20 256 01:23 
8 07:37 512 01:17 

16 04:36 768 01:15 
32 02:53 1024 01:15 

 
The optimal performance is achieved when two or more brokers are used (see 

Fig. 1). In fact, with less than 512 query servers, two brokers are able to provide 
continuously queries to the servers, and so, the performance of the system is 
maximised. However, there is still a bottleneck with 768 or 1024 query servers, with 
inactivity periods that will reduce the throughput. Three brokers will provide the 
maximum throughput, and no benefit is obtained if the number of brokers is 
increased. 

The bottleneck in the brokers is due to the number of local answer sets received 
from all the query servers that must be sorted. Therefore, increasing the number of 
query servers will benefit the processing time in the query servers as each server 
reduces the size of its index. On the other hand, the brokers will receive more local 
answer sets to be merged in the final result set. In fact, if the number of query servers 
is high enough, the performance will start descending at a certain point, independently 
of the number of brokers used. 

Working with an optimal configuration of three brokers, Table 4 provides an 
estimation of the expected time in minutes to process 50 queries by a distributed IR 
system, using from 1 to 1024 query servers. 

Without any improvements, the throughput tends to be stabilised around 0.64 
queries/second with 512 query servers, with minor improvements as the number of 
servers increases (0.66 queries/second with 1024 query servers). 

4.2 Replicated System 

A replicated system is composed of one or more distributed IR systems. Each 
distributed system indexes the whole collection, and all the distributed systems 
replicated have the same number of query servers. In this case, the distributed system 
previously described could be seen as a replicated system, with only one replica. 

In a replicated system, the brokers must decide initially which replica will process 
the query, and then broadcast the query to all the query servers in the replica. The 
objective of the selection of the replicas is to balance the load through all the replicas 
to obtain an optimal performance for the whole system. In our case, a round robin 
policy is used to distribute the queries to the replicas. Each broker will select a 
different initial replica and for each following query the next replica is selected. 

Firstly, the optimal number of brokers required in a generic replicated system is 
analysed. To study this, a set of replicated systems was simulated, changing the 
number of brokers used. A summary of the results is provided in Table 5. 



Performance Analysis of Distributed Architectures to Index One Terabyte of Text         403 

 

Table 5. Throughput (queries per second) for different replicated IR systems. The “Query 
servers” column represents the number of servers per replica. Each column indicates the 
number of replications (R) and the number of brokers used (B) 

Query 
servers 

R=1 
B=3 

 
B=4 

R=2 
B=5 

 
B=6 

 
B=6 

R=3 
B=7 

 
B=8 

 
B=8 

R=4 
B=9 

 
B=10 

1 0.02 0.03 0.03 0.03 0.05 0.05 0.05 0.06 0.06 0.05 
2 0.03 0.05 0.06 0.06 0.08 0.09 0.08 0.11 0.11 0.11 
4 0.06 0.1 0.11 0.11 0.14 0.15 0.16 0.19 0.19 0.2 
8 0.11 0.18 0.2 0.2 0.27 0.27 0.29 0.35 0.36 0.36 

16 0.18 0.3 0.34 0.35 0.47 0.47 0.52 0.61 0.64 0.63 
32 0.29 0.5 0.53 0.55 0.73 0.77 0.8 0.98 0.99 0.99 
64 0.41 0.75 0.78 0.81 1.1 1.18 1.1 1.46 1.48 1.47 

128 0.52 1 0.98 1 1.46 1.42 1.4 1.95 1.93 1.9 
256 0.6 1.17 1.16 1.18 1.72 1.7 1.73 2.2 2.18 2.26 
512 0.64 1.19 1.24 1.27 1.6 1.78 1.81 1.95 2.05 2.13 
768 0.66 0.96 1.24 1.29 1.17 1.42 1.46 1.26 1.45 1.47 

1024 0.66 0.85 0.99 1.07 1.06 1.08 1.11 1.11 1.13 1.13 
 
Initially, a two replications system is simulated, testing different number of 

brokers. With only four brokers, there is a reduction in the performance, following the 
pattern of the basic distributed system with two brokers (decreasing with 768 or 1024 
hosts per replica). While, with five brokers the maximum throughput is achieved, an 
increase in the number of brokers will slightly increase the performance (and 
simultaneously, the network load). 

The case of the systems with three and four replications is quite similar. With six 
and eight brokers, there is a decrease in the performance for more than 512 hosts, 
reproducing the behaviour of one unique distributed system. As in the previous case, 
one more broker is sufficient to avoid the bottleneck and serve properly all the 
servers. 

Generally, for the configurations simulated, the number of brokers necessary to 
operate a generic replicated system, with R replicas, is given by: 2R + 1. With 2R 
brokers there is still a bottleneck when the number of query servers is high, and this 
extra broker will reduce the idle times in the hosts. If the number of replications is 
further increased, more extra brokers would be necessary to maintain throughput at 
the same levels. 

Another important point in the replicated systems is the relation between the 
throughput and the number of replicas. If a basic distributed system has a throughput 
of T queries/minute, then the expected throughput for a system with R replicas will be 
T*R. This is coherent with the results obtained in Table 5, especially considering 128 
or less query servers per replica. In this case, the throughput obtained for the different 
replicated systems, with the optimal number of brokers (or more), is slightly below 
the theoretical value. This is due to the round robin distribution policy used in the 
brokers, as it can lead to some small periods of inactivity at certain replicas. In future 
works, some other distribution policies can be analysed in order to improve the 
throughput up to the optimal theoretical value, similar to the one used in [12]. 



404         F. Cacheda, V. Plachouras, and I. Ounis 

 

Note that if more than 256 query servers are used per replica, the performance of 
the system starts to decrease rapidly. If the total number of query servers in the 
system (considering all the replicas) is beneath 1000, the performance is improved 
with each new replica added. However, if the number of query servers is over this 
limit, the performance decreases, especially as more replicas are included in the 
system. In fact, a system with 4 replicas of 1024 query servers has a worse throughput 
than a system with 4 replicas of 64 servers each. 

This loss of performance is due to the network. Each replication adds more hosts to 
the network, which is used intensively to send the results back to the brokers. As a 
consequence, the network latency is greatly increased with each new replica added, 
converting the network to the bottleneck for the whole system. In a system with one 
replica and 1024 query servers, each byte will reach its destination in 0.36 ms on 
average. However, in a system with four replicas and 1024 query servers per replica, 
the time each byte needs to reach its destination increases 10 times. Hence, all the 
messages sent through the network are highly delayed producing inactivity periods on 
both, the query servers and the brokers. 

4.3. Clustered System 

A clustered system is divided into groups of computers, where each group operates as 
an autonomous distributed and replicated IR system. Each cluster can be composed of 
a different number of query servers. We assume that each cluster is responsible for 
one disjoint part of the whole collection of documents, and each cluster could use 
distribution and replication to store its respective index. 

The brokers are global for the whole IR system. First, a broker must determine the 
appropriate cluster for each query and then should broadcast the query to the selected 
clustered system. If the cluster supports replication, then the broker will also decide to 
which replica the query will be sent (e.g. by using the round robin policy). 

Different commercial Web IR systems claim to use a clustered system adapted to 
the distributions of the queries received (e.g. AllTheWeb). Therefore, the objective of 
these experiments is to test if the performance of a replicated IR system could be 
improved using a clustered system fitted to a distribution of queries, and how the 
changes of this distribution will affect the performance. 

In the work by Spink et al. [14], a set of real queries of Web users is categorized 
into 11 different topics. Moreover, the variations in the percentage of queries for each 
topic are analyzed in three different years: 2001, 1999 and 1997. Table 6 provides a 
summary of the 11 topics and the percentage of queries through the different years. 

In the simulated systems, once a query is generated, it is automatically assigned to 
a topic using these distributions values. In these simulations, the number of queries is 
increased to 200 in order to examine the whole range of topics, and the queries will 
retrieve 3 million documents on average to fit the size of the clusters. 

In these experiments, we assume that each topic is indexed in a different cluster. 
The collection is divided into 11 sub-collections with an inverted file of 
approximately the same size, that is 8.5 million documents and, therefore, the 11 
clusters defined will index the same number of documents, although using a different 
number of servers. 



Performance Analysis of Distributed Architectures to Index One Terabyte of Text         405 

 

Table 6. Distribution of queries across general topic categories, and configurations for the 
clustered systems simulated 

Topics 2001 1999 1997 Config 1 Config 2 

Commerce 24.755 % 24.73 % 13.03 % 8 * 4 63 * 4 
People 19.754 % 20.53 % 6.43 % 6 * 4 51 * 4 
Non-English 11.355 % 7.03 % 3.84 % 5 * 3 39 * 3 
Computers 9.654 % 11.13 % 12.24 % 4 * 3 33 * 3 
Pornography 8.555 % 7.73 % 16.54 % 5 * 2 44 * 2 
Sciences 7.554 % 8.02 % 9.24 % 5 * 2 38 * 2 
Entertainment 6.655 % 7.73 % 19.64 % 4 * 2 34 * 2 
Education 4.554 % 5.52 % 5.33 % 6 * 1 47 * 1 
Society 3.955 % 4.43 % 5.44 % 5 * 1 41 * 1 
Goverment 2.054 % 1.82 % 3.13 % 3 * 1 21 * 1 
Arts 1.155 % 1.33 % 5.14 % 2 * 1 12 * 1 

 
The base sub-collection of 8.5 million documents has been distributed over N 

query servers, where N = 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512. The throughput 
matches the previous results displayed in Fig. 1, with an optimal configuration of two 
brokers. 

Roughly speaking, two different configurations have been tested for the clustered 
system. The first one has 128 query servers and the second one has 1024 query 
servers. Each cluster is assigned a number of query servers proportional to the 
percentage of queries that it should receive (see Table 6). 

For the first configuration, the baseline is a replicated IR system, with 4 
replications of 32 query servers each. On the other side, the clustered system is 
configured in accordance with the distribution of the topics on the year 2001. In 
Table 6, the column “Config 1” describes the query servers assigned to each topic. 
The first number represents the number of the distributed query servers, and the 
second, the number of replicas in each cluster. 

Figure 2 presents the box diagram for the response time for the first 100 queries 
processed by the tested systems. All the systems were tested for queries following the 
topics of years 2001, 1999 and 1997. Obviously, the performance of a replicated IR 
system does not depend on the type of queries (the baseline is independent of this 
factor), and the response times for the clustered system with 128 servers are labelled 
“Config 1-2001”, “Config 1-1999” and “Config 1-1997”, respectively. 

The first clear conclusion is that the clustered system does not outperform a 
replicated system. The replicated system will process one query on 4682 milliseconds, 
while the clustered system optimally configured for the 2001 queries will just process 
one query in 7806 milliseconds (approximately the same performance as a system 
with two replicas of 64 servers). On the contrary, the clustered system reduces greatly 
the network load with 0.0008 ms/byte, vs. the replicated system with 0.0044 ms/byte. 

On the other hand, the clustered system seems sensitive to the changes in the topics 
of the queries through the time. For the queries of the year 1999, the performance is 
nearly the same, 8068 milliseconds per query, while for the 1997, queries the 
performance drops to 9212 milliseconds per query. In fact, the higher differences for 
the topic distributions are between the years 2001 and 1997 (see Table 6). 



406         F. Cacheda, V. Plachouras, and I. Ounis 

 

100100100100N =

Config 1-1997Config 1-1999Conf ig 1-2001Baseline

R
e

sp
o

ns
e

 ti
m

e
 p

er
 q

u
e

ry
 (

m
s)

30000

20000

10000

0

368371

387

241281292

287

2143

739

 
100100100100N =

Conf ig 2-1997Config 2-1999Config 2-2001Baseline

R
es

po
ns

e 
tim

e
 p

e
r 

qu
er

y 
(m

s)

6000

5000

4000

3000

2000

1000

168

9

 

Fig. 2. Clustered IR system vs. a replicated IR 
system. Configuration 1: 128 query servers 

Fig. 3. Clustered IR system vs. a replicated IR 
system. Configuration 2: 1024 query servers 

Also, the presence of atypical data reflects the effect of the changes in the topics 
through the time. In fact, the baseline also happens to have some atypical data but 
very near the confidence interval, due to the distribution of the queries over many 
servers. In a clustered system, with a reduced amount of hosts per cluster, some heavy 
queries will produce higher response times. This is more notable when the topics of 
the queries are changed (1997 queries), because the smaller clusters may have to cope 
with a higher number of queries than initially expected. 

In the second configuration, the 1024 query servers of the clustered system are 
assigned according to the values reflected in Table 6, on the column labelled 
“Config 2”. The baseline in this case, is a replicated system with 4 replicas of 256 
query servers each. As for the previous case, the clustered system and the replicated 
system have processed the queries matching the 2001, 1999 and 1997 distributions. 
Fig. 3 shows the box diagram for the response time for the first 100 queries processed 
for all these systems. 

In this case, the clustered system outperforms the baseline, for all the years of the 
query distributions. The replicated system has a performance of 3313 milliseconds per 
query, while the clustered system for the 2001 queries will process one query in 2665 
milliseconds on average. Regarding the network load, while the replicated system 
needs, on average, 0.112 milliseconds to send one byte, the clustered system uses only 
0.007 milliseconds per byte, on average. 

This configuration is also sensitive to the changes in the topics of the queries, but 
to a smaller degree. For the 1999 queries, the performance is slightly better, 2630 
milliseconds per query, but with the 1997 queries the performance drops to 2938 
milliseconds per query (still outperforming the baseline). 

In this configuration, the increase in the number of query servers augments the 
distribution of the local indexes and therefore, the increase in the response times is 
less significant. At the same time, the different clusters can support more easily the 
changes in the query topics through the time. In this configuration, for the 1997 
queries, the performance decreases by 9%, while with 128 query servers the 
throughput decreased by 14%. 



Performance Analysis of Distributed Architectures to Index One Terabyte of Text         407 

 

5   Conclusions 

In this paper, we have described different architectures for a distributed IR system, 
analyzing the optimal design and estimating the maximum performance achieved with 
multiple configurations (from 1 up to 4096 query servers). We have studied the 
performance of a simulated distributed, replicated and clustered system on a very 
large Web collection, and we have established the bottlenecks and limitations of each 
possible configuration. 

Two main bottlenecks have been identified in a distributed and replicated IR 
system: the brokers and the network. The load on the brokers is mainly due to the 
number of local answer sets to be sorted (characteristic of a distributed system). 
Therefore, the load can be improved by reducing the number of documents included 
in the local answer sets by all the query servers, which can affect the precision and 
recall parameters. Another way is to reduce the number of local lists sent to the 
brokers, by designing more complex and elaborate distributed protocols. 

The network bottleneck is due to the high number of query servers and the 
continuous data interchange with the brokers, especially in a replicated IR system. 
The traffic over the network can be limited by reducing the number of results in each 
local answer set (with the additional benefit over the brokers) or compressing the 
local answer set before sending it. 

The analysis of the clustered systems indicates that the best throughput of these 
systems is achieved when a great number of query servers is used, outperforming a 
replicated system. A clustered system will reduce greatly the network load as only a 
fraction of the query servers will process and answer each query. Therefore, in a 
replicated system, the network load increases (and the throughput improvements are 
slowed) as the number of servers increases. While in a clustered system the 
processing times in the clustered query servers could be slightly higher, the local 
answers will reach faster the broker and the brokers will receive fewer answers, 
processing the final results more efficiently. 

However, the clustered systems must be configured a-priori based on the 
distribution of the queries that the IR system will receive. Therefore, to avoid negative 
effects on the performance, it is important to detect changes in the distribution of the 
queries through the time and re-configure the clusters of the system accordingly.  

In the future, we plan to study different solutions for the brokers and network 
bottlenecks (e.g. distributing the brokers) and their implications in the retrieval 
performance. Also, these results will be used to extend the basic actual IR system to a 
distributed system, and in general, we believe that the results in this paper are useful 
to any group interested in indexing a very large collection like SPIRIT. 

Acknowledgements. The work of the first author has been partially supported by 
Spanish CICYT, under project TIC2001-0547 and by the Fundación Caixa Galicia 
(grant 2002/2003 postgraduate studies). 

The work of the second and third authors is funded by a UK Engineering and 
Physical Sciences Research Council (EPSRC) project grant, number GR/R90543/01. 
The project funds the development of the Terrier Information Retrieval framework 
(url: http://ir.dcs.gla.ac.uk/terrier). 

We would also like to thank Mark Sanderson and Hideo Joho for giving us access 
to the 1TB dataset used for the SPIRIT Project. 



408         F. Cacheda, V. Plachouras, and I. Ounis 

 

References 

1. Amati, G., Carpineto, C., Romano, G.: FUB at TREC-10 Web track: A probabilistic 
framework for topic relevance term weighting. In NIST Special Publication 500-250: The 
Tenth Text REtrieval Conference (TREC-2001). 2001. 

2. Burkowski, F. J.: Retrieval performance of a distributed database utilizing a parallel 
process document server. In Proceedings of the International Symposium on Databases in 
Parallel and Distributed Systems, pp: 71-70. 1990. 

3. Cahoon, B., McKinley, K.S.: Performance evaluation of a distributed architecture for 
information retrieval. In Proceedings of ACM-SIGIR International Conference on 
Research and Development in Information Retrieval, pp: 110-118. 1996. 

4. Callan, J.: Distributed information retrieval. In W. Bruce Croft, editor, Advances in 
Information Retrieval: Recent Research from the CIIR, chapter 5, pp: 127-150. Kluwer 
Academic Publishers, 2000. 

5. Hawking, D.: Scalable text retrieval for large digital libraries. In Proceedings of the 1st 
European Conference on Research and Advanced Technology for Digital Libraries, 
Springer LNCS, vol. 1324, pp: 127-146. 1997. 

6. Hawking, D., Thistlewaite, P.: Methods for Information Server Selection. ACM 
Transactions on Information Systems, 17(1), pp: 40-76. 1999. 

7. Hawking, D., Craswell, N.: Overview of the TREC-2001 Web Track. In: Information 
Technology: The Tenth Text Retrieval Conference, TREC 2001. NIST SP 500-250. pp.61-
67. 

8. Heaps, H. S.: Information Retrieval: Computational and Theoretical Aspects. Academic 
Press, New York, 1978. 

9. Jeong, B., Omiecinski, E.: Inverted File Partitioning Schemes in Multiple Disk Systems. 
IEEE Transactions on Parallel and Distributed Systems, 6(2):142-153. 1995. 

10. Jones, C.B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M., Weibel, R.: 
Spatial information retrieval and geographical ontologies an overview of the SPIRIT 
project. In Proceedings of the 25th ACM-SIGIR Conference on Research and 
Development in Information Retrieval, pp. 387-388. ACM Press, 2002. 

11. Little, M. C.: JavaSim User's Guide. Public Release 0.3, Version 1.0. 
http://javasim.ncl.ac.uk/manual/javasim.pdf, University of Newcastle upon Tyne, 2001. 

12. Lu, Z., McKinley, K.: Partial collection replication versus caching for information retrieval 
systems. In Proceedings of the ACM International Conference on Research and 
Development in Information Retrieval, pp: 248-255. 2000. 

13. Ribeiro-Neto, B. Barbosa, R.: Query performance for tightly coupled distributed digital 
libraries. In Proceedings of the 3rd ACM Conference on Digital Libraries, pp: 182-190. 
1998. 

14. Spink, A., Jansen, B. J., Wolfram, D., Saracevic, T.: From e-sex to e-commerce: Web 
search changes. IEEE Computer 35(3): 107-109. 2002. 

15. Tomasic, Al, Garcia-Molina, H.: Performance of inverted indices in shared-nothing 
distributed text document information retrieval systems. In Proceedings of the 2nd 
International Conference on Parallel and Distributed Information Systems, pp: 8-17, 1993. 


	Introduction
	Related Work
	Simulation Model
	Analytical Model
	The Spirit Collection Model
	Distributed Model

	Simulation Results
	Distributed System
	Replicated System
	Clustered System

	Conclusions

