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Abstract

The increasing number of documents to be indexed in many environments (Web, intranets, digital libraries) and the

limitations of a single centralised index (lack of scalability, server overloading and failures), lead to the use of distri-

buted information retrieval systems to efficiently search and locate the desired information. This work is a case study

of different architectures for a distributed information retrieval system, in order to provide a guide to approximate the

optimal architecture with a specific set of resources. We analyse the effectiveness of a distributed, replicated and clus-

tered architecture simulating a variable number of workstations (from 1 up to 4096). A collection of approximately 94

million documents and 1 terabyte (TB) of text is used to test the performance of the different architectures. In a purely

distributed information retrieval system, the brokers become the bottleneck due to the high number of local answer sets

to be sorted. In a replicated system, the network is the bottleneck due to the high number of query servers and the con-

tinuous data interchange with the brokers. Finally, we demonstrate that a clustered system will outperform a replicated

system if a high number of query servers is used, essentially due to the reduction of the network load. However a change

in the distribution of the users’ queries could reduce the performance of a clustered system.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The number of documents available on the Web is increasing daily, from several thousands in 1993

to more than 4 billion indexed by Google (2004) in 2004. There are several challenges faced by Web
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Information Retrieval (IR) systems in this highly dynamic environment. One major challenge is how to effi-

ciently locate the desired information into all available data. Recent research in Web IR has led to the

development of highly effective search engines that allow users to locate relevant or useful documents. A

second challenge at the system level is how to design retrieval engines that can process a massive number

of documents, while handling a considerable number of queries simultaneously.
Retrieval systems based on a single centralised index are subject to several limitations: lack of scalability,

server overloading and failures (Hawking & Thistlewaite, 1999). Therefore, given these facts, it seems more

appropriate to turn to the Distributed Information Retrieval (DIR) approach for the storage and search

processing.

In a distributed search environment, there are usually two basic strategies for distributing the inverted

index over a collection of query servers (Ribeiro-Neto & Barbosa, 1998; Tomasic & Garcia-Molina, 1993).

One strategy is to partition the document collection so that each query server is responsible for a disjoint

subset of documents in the collection (called local inverted files in Ribeiro-Neto & Barbosa (1998)). The
other option is to partition based on the index terms so that each query server stores inverted lists corre-

sponding to only a subset of the index terms in the collection (called global inverted files in Ribeiro-Neto &

Barbosa (1998)). In the local inverted file organisation, a search term will be broadcasted to all the query

servers, each of which would return a disjoint list of relevant documents. In the global inverted file organ-

isation, only some query servers will receive some query terms, each of which would return a list of relevant

documents for each term. Performance studies described in (Tomasic & Garcia-Molina, 1993) indicate that

the local inverted file organisation uses system resources effectively, provides good query throughput in

most cases and is more resilient to failures.
From the collection point of view, a distributed information retrieval system could follow a single-col-

lection model or a multi-collection model (Callan, 2000). In the single-collection model, the collection of

documents is indexed and distributed as a whole. In a multi-collection model, the whole collection of doc-

uments is divided into sub-collections that are indexed independently, where each sub-collection could have

the inverted index distributed. A central server stores the descriptions of each sub-collection, and a sub-col-

lection selection service will identify the most relevant sub-collection(s) for each query. The query is sent to

the most relevant sub-collections and the results are merged considering that different rankings schemes

could have been used.
This work is a case study of different architectures for a distributed information retrieval system. The

SPIRIT collection (94,552,870 documents and 1 terabyte (TB) of text) (Jones et al., 2002) is used for the

simulation of the distributed IR system. We partition the collection of documents using a local inverted

file strategy, and we test the response times for different configurations. Although the obtained timings

depend on the specific system simulated (>Plachouras, Ounis, Amati, & van Rijsbergen, 2002), the trends

and conclusions should be independent of the system used. In this way, we intend to provide a guide to

estimate the optimal architecture of a distributed IR system to index and search a very large collection like

SPIRIT.
The improvements in the performance of a single-collection model are examined in a distributed and rep-

licated system. Moreover, the effects of a multi-collection model are tested through a clustered system.

Using the query topics provided in (Spink, Jansen, Wolfram, & Saracevic, 2002), we define a clustered sys-

tem and compare its performance with a replicated system in order to measure the effect of changes in the

query topics through time.

We start by presenting the related work in Section 2. In Section 3, we describe our simulation

model, starting with the analytical model for a basic, not distributed, IR system. Next, a generic collec-

tion model is described and the key components of a distributed IR system are analysed. In Section 4,
we describe the simulations performed for the different architectures: distributed, replicated and clus-

tered system, and the results obtained. Finally, the main conclusions and the future work are presented

in Section 5.
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2. Related work

Related work for distributed IR systems includes the evaluation of the architecture performance, data

partitioning, caching and multiprocessor systems. However, the work on architecture performance is the

most directly related to this paper.
Harman, Mccoy, Toense, and Candela (1997) showed the feasibility of a distributed IR system, by devel-

oping a prototype architecture and performing user testing. However, they used a very small text collection

(less than 1 GB data), and did not analyse efficiency issues.

Burkowski (1990) described a simulation study which measures the retrieval performance of a distri-

buted IR system, using also a small collection. The performed experiments explore two strategies for dis-

tributing the workload across the servers. The first strategy distributes the collection among all servers

uniformly. In the second strategy, the servers are divided into two groups: query evaluation and document

retrieval. Burkowski concluded that the second strategy could provide better response times than the uni-
form approach under certain conditions, although the uniform strategy would perform generally better.

Lin and Zhou (1993) implemented a distributed IR system on a network of workstations, showing large

speedup improvements due to parallelisation. The implemented retrieval model uses a variation of the sig-

nature file scheme to encode documents and to map the signature file across the network.

Coevreur et al. (1994) analysed the performance of searching large text collections (more than 100 GB

data) on parallel systems. They used simulation models to investigate three different hardware architectures

(a mainframe system, a collection of RISC processors and a special purpose machine architecture) and

search algorithms. The focus of their work was to analyse the tradeoff between performance and cost, where
the mainframe configuration was found to be the most effective.

Hawking (1997) designed and implemented a parallel IR system on a collection of workstations doing

experiments with a maximum of 64 workstations. The basic architecture of the implemented system uses

a central process to check for user commands and broadcast them to the servers in each workstation.

The central process also merges the partial results before sending the final answer set to the user.

Cahoon and McKinley (1996) described the result of simulated experiments on the distributed IN-

QUERY architecture. Using the observed behaviour for a mono-server implementation, they estimated

the performance figures for a distributed implementation, proving it to be scalable. They experimented with
collections up to 128 GB using a variety of workloads, and investigated how different system parameters

could affect the performance and scalability of a distributed IR system, using up to 128 servers. Their results

show that with a simple distributed architecture, the system maintains scalable performance at higher work-

loads.

Lu and McKinley (2000) analysed the effects of partial collection replication to improve the performance

in a collection of 1 TB, simulating up to 33 servers. They concluded that the performance of partial repli-

cation with a connection broker exceeds that of a client-side caching or server-side caching.

The previous work for distributing the inverted index over a collection of servers is focused on the local
and global inverted files strategies (Martin, Macleod, & Nordin, 1986; Ribeiro-Neto & Barbosa, 1998;

Tomasic & Garcia-Molina, 1993), showing that the local inverted file is a more balanced strategy and a

good query throughput could be achieved in most cases.

Our work is focused on the simulation and performance evaluation of several distributed architectures

using a massive cluster of workstations (up to 4096) and identifying the limitations of each model. This

work is especially related to Cahoon and McKinley (1996) and Ribeiro-Neto and Barbosa (1998), but it

mainly differs in three points. First, the probabilistic model is considered and, therefore, disjunctive queries

are used in our system (without the reduction in the answer set provided by the conjunctive operations).
Second, a simple analytical model is developed initially for a single-collection/single-server environment

(similarly to Ribeiro-Neto & Barbosa (1998)), and this will be the basis for the simulation of the distributed

IR systems, composed of multiple query servers (similarly to Cahoon & McKinley (1996)). Third, initially
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the results of the analytical model are tested using the TREC WT10g collection and the set of the topic-

relevance queries from TREC10 (Hawking & Craswell, 2001). Next, we model a document collection of

1 TB and a set of queries, in order to obtain more generic results.
3. Simulation model

To explore the performance of different architectures for a distributed IR system, we implemented a dis-

crete event-oriented simulator using the JavaSim simulation environment (Little, 2001).

The simulation model defined in this work is divided into three parts. Initially an analytical model has

been developed for the simulation of a simple IR system based on the WT10g collection and the queries

from the topic-relevance task of TREC10 (Hawking & Craswell, 2001), using a single server. Next, a col-

lection model is defined to simulate, in general, the behaviour of any collection of documents and in par-
ticular, a new collection composed of 94 million documents and 1 TB of text. Finally, the basic IR model is

extended to a distributed IR model defining the behaviour of a local area network of computers and mod-

elling the tasks of the query brokers and the query servers.
3.1. Analytical model

In this section, we describe a simplified analytical model for the querying process in the IR system de-

scribed in (Plachouras et al., 2002), using the WT10g collection and the set of queries used for TREC10 (see
(Bailey, Craswell, & Hawking, 2003) for more details about WT10g). This analytical model is similar to the

one described in (Ribeiro-Neto & Barbosa, 1998) and despite its simplicity, this model captures the key fac-

tors that determine the query processing performance for the studied IR system.

A series of experiments were carried out to identify and estimate the basic variables and critical para-

meters of the analytical model. The notation for these variables and parameters is provided next:
qi v
ector of keywords for the ith query
ki n
umber of keywords in query qi

dk n
umber of documents of the inverted list for keyword k
ri n
umber of results obtained in query qi

tc1 fi
rst coefficient for the time to compare two identifiers and swap them (merging process)
tc2 s
econd coefficient for the time to compare two identifiers and swap them (sorting process)
ti in
itialisation time, including memory allocation and output display
ts a
verage seek time for a single disk
tr a
verage time to read and process the information about one document in an inverted list (seek time

is excluded)
ti t
otal time (in ms) to complete the processing of query qi.
Once the query server receives the query vector qi for processing, it reads from disk the inverted lists

associated with the ki keywords, whose length is given by dk. Then the inverted lists are merged and sorted

to form the answer set whose length is given by ri. The coefficients tc1 and tc2 are used in the calculation of

the time to merge and sort the results. Ribeiro-Neto and Barbosa (1998) have modelled this process using a

linear relationship, but from our experiments, a logarithmic model seems to fit more accurately as the num-

ber of results increases. Hence, the time to merge and sort n results (tc) is calculated as:
tc ¼ tc1 � nþ tc2 � lnðnÞ
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The processing of a query is divided into four phases: an initialisation phase (P1), seeking disks (P2), reading

the inverted lists from disk and processing the weights (P3) and obtaining the answer set and ranking the

results (P4). Therefore, the processing time for a query qi is ti, given by:
Fig. 1.

tr=4.0
ti ¼ tiþ ðP1Þ
ki � tsþ ðP2ÞX
k2qi

dk � tr þ ðP3Þ

tc� ri ðP4Þ
In this analytical model, the parameters dk and ri have to be estimated accurately. We evaluate the accuracy

of the estimation by processing the topic-relevance queries from TREC10’s Web track with a real IR system
(Plachouras et al., 2002). In this way, we obtain the exact number of results for each query and the exact

number of documents associated with each of the inverted lists retrieved by the system.

To compare the accuracy of our analytical model with the real IR system, we measured the required time

to process, on a single computer, the queries 501–550 used for the TREC10 topic-relevance task with the

WT10g collection. This computer had 2 AMD Athlon processors at 1.4 GHz and 2 GB RAM. The process-

ing time of the same 50 queries was also evaluated for the proposed analytical model. Both Mann–Whitney

and Kolmogorov–Smirnov two sample tests confirm the correspondence between the real and predicted

processing times, with p-values of 0.956 and 1.0, respectively. In Fig. 1, we show the cumulative response
times for the real system and our analytical model.

3.2. The spirit collection model

In a simulation study, the documents and queries can be represented using two different techniques. One

is to use a real collection of documents and actual queries. The second technique consists of generating syn-

thetic databases and queries, from the probability distributions that are based on real statistics (Tomasic &

Garcia-Molina, 1993).
The former is more realistic and it allows the comparison between the simulation model and the real sys-

tem (as described in the previous section), but it is limited to a particular application and domain. The use

of synthetic data provides more flexibility for studying a wider range of configurations.
Comparison between real and estimated execution times for 50 WT10g queries. Parameter values: ti=1400 ms, ts=0.03 ms,

208 ls, tc1=0.00013068, tc2=0.000096.
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As a consequence, the basic analytical model defined for the WT10g collection will be extended to work

with synthetic databases and queries. The objective is to simulate the so-called SPIRIT collection, com-

posed of approximately 94 million Web documents and 1 TB of text, although no queries and relevant

assessments exist for the moment (Jones et al., 2002). We divide this collection in 72 sub-collections and

we use the statistical information (vocabulary size, document size, etc.) of one of them to model the whole
collection.

3.2.1. Document model

For the document model, we first study the main parameters of one of the sub-collections, and using this

as a basis, the values for the whole SPIRIT collection are estimated. In Table 1, we provide definitions for

the considered parameters.

The first column describes the parameters that represent a database of documents. The database consists

of a collection of D documents. Each document is generated by a sequence of W independent and identi-
cally distributed words. Each word is uniquely identified by an integer w in the range 1 6 w 6 T, where

T= jVj. The probability distribution F describes the probability that any word appears and, for conven-

ience, is arranged in decreasing order of probability.

The second column of the table represents our base case scenario and the values are obtained from one

fraction of the SPIRIT collection. To define a specific probability distribution Z1 of F, a distribution is fit-

ted to the rank/occurrence plot of the vocabulary, and then normalised to a probability distribution. Fig. 2

shows the log–log graph of a linear and quadratic model fit to some of the 500,000 most frequent words.
Table 1

Parameters for the document model

Parameter Real values

(SPIRIT sub-collection)

Estimated values

(whole SPIRIT collection)

Description

D 1,221,034 94,552,870 The number of documents

W 456 456 Average words per document

V – – The vocabulary

T 4,301,776 73,689,638 Total words in V, i.e. T= jVj
F(w) Z1(w) Z2(w) Pr(word=w)

log(rank of words sorted by number of occurrences)
14121086420
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Fig. 2. Linear and quadratic fit to vocabulary occurrence data.
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The X axis represents the words in the vocabulary, ranked by the number of occurrences in decreasing or-

der. The Y axis represents the number of occurrences of each word.

A regression analysis was performed and confirmed that the quadratic model fits the real distribution

(R=0.99770) better than the linear model, which corresponds to the Zipf ’s law (R=0.98122). The quadratic

model is similar to Zipf ’s, although in previous works (Tomasic & Garcia-Molina, 1993), it has proved to
match the actual distribution better.

Given the quadratic fit curve, the form of the probability distribution Z1(w) is obtained from the quad-

ratic model, and then divided by a normalisation constant, to make the probabilities sum to 1 (Tomasic &

Garcia-Molina, 1993):
Z1ðwÞ ¼
w�0:046648�lnw�0:432720e16:068777

4:284081� 108
The third column of Table 1 shows the estimated values of the parameters for the whole SPIRIT collection.

The number of documents in the collection is 94,552,870. The average number of words per document is
supposed to remain stable. Therefore, the same value as the base case is chosen.

The size of the vocabulary of a collection of documents is supposed to match the Heaps law (Heaps,

1978), which states that the vocabulary size of a collection of documents with n terms is given by:
V ¼ Knb
where K and b are two parameters that depend on the collection. To estimate these parameters, the values
of V and n were measured at several points during the indexing process of the sub-collection, and a regres-

sion analysis was performed. Fig. 3 shows the log–log graph of the real values and a linear model fit, prov-

ing a strong linear relationship (R=0.999). The estimated values for the parameters are: K=4.60363 and

b=0.6776.
Therefore, to estimate the size of the vocabulary of the whole collection, the Heaps law is used for the 94

million documents and 456 words per document, obtaining an approximation of 73,689,638 unique terms
for the whole collection.

Finally, a different probability distribution is provided for the whole collection. Given the quadratic fit

curve previously described, a new normalisation constant is defined for the new vocabulary size:
Fig. 3. Log–log plot of unique vocabulary terms vs. total terms, fit to a linear model.
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Z2ðwÞ ¼
w�0:046648�lnw�0:432720e16:068777

4:294476� 108
3.2.2. Query model

A query is a sequence of terms (t1, . . ., tk) generated from K independent and identically distributed trials

from the probability distribution Q(t). In our simulation study, the number of terms is selected uniformly

between 1 and 4 terms per query, based on the terms used in the TREC10 topic-relevance queries. In Table

2, we present a description of each parameter and the corresponding values we used for the simulations.

There is little published data on the probability distribution Q. Tomasic and Garcia-Molina (1993) as-

sume the uniform term distribution with the fraction parameter for the query model. However, Jeong and

Omiecinski (1995) model Q, assuming that the probability of a term occurring in a query is proportional to

that term’s frequency in the collection. These two different query models are named uniform query model
and skewed query model, respectively.

The probability distributions Q(t) for the two query models are:

Uniform Query Model:
QðtÞ ¼
1

ðu� sÞT if sT 6 t6 uT

0 otherwise

8<
:

Skewed Query Model:
QðtÞ ¼ C � ZðtÞ if sT 6 t6 uT
0 otherwise

�
where 1 ¼

XuT
i¼sT

C � ZðiÞ
The parameters u and s affect the probability that a term appears in a query. As u decreases, the probability

of choosing a word of low rank increases. Words of low rank occur frequently in the documents of the col-

lection. Therefore, if u is too small, the queries will retrieve a large fraction of the documents. On the other

hand, if u is too large, the answer sets will be too small (Jeong & Omiecinski, 1995). The parameter s is

introduced to avoid the effect of the first words in the rank, i.e. stopwords, which increase excessively

the number of results obtained. As s increases, more words from the top rank are considered to be stop-

words, and therefore are not used as query terms.
At certain points in the simulation, we will need to know the expected size of an inverted list for a query

term and the expected size of an answer set for a given query. Let us assume a query with terms t1, . . ., tk
that is executed in a collection (or sub-collection) of documents of size Documents. If we are considering the

whole collection Documents=D, but in a distributed environment, Documents corresponds to the number

of documents covered by each of the distributed indices. Therefore, the number of documents of an in-

verted list for term ti will be (Tomasic & Garcia-Molina, 1993):
Documents� ½1� ð1� ZðtiÞÞW 

2

eters for the query model

eter Value Description

[1–4] The number of terms per query

Q(t) Pr(term= t)

The fraction of T (in rank order of V) used in the query terms

The fraction of T (in rank order of V) skipped for the query terms



Fig. 4. Comparison of the response times for the uniform and skewed query models with the analytical model.
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Consequently, the expected size of the answer set for a query with terms t1, . . ., tk (supposing a disjunctive
query) is:
1 In

to the

term fr
Documents� ½1� ð1� Zðt1ÞÞW � � � � � ð1� ZðtkÞÞW 


In order to test the accuracy of the described SPIRIT document collection, a simulation was performed to

replicate the results for the WT10g collection, with the analytical model. First, the parameters u and s were

configured empirically to retrieve, on average, the same number of documents as the real set of queries

(approximately, 150,000 documents per query, 9% of the collection), for both query models. For the uni-

form query model, the values used were: u=0.0009 and s=0.00005; for the skewed query model, the values
used were: u=0.01 and s=0.00007. In both cases, u was selected to be as small as possible, in order to use a

realistic portion of the vocabulary, trying to avoid uncommon terms.

The comparison of the response times of both query models and the analytical model is shown in Fig. 4.

Here, it is clear that the simulations using the query models produce on average similar response times as

the baseline. Although the fluctuations of the real queries are not present in the query models (probably due

to the uniform selection of the terms per query in our query models), these models can be considered as

quite accurate for the average response times.

On the other hand, there is no clear difference between the response times for the uniform query model
and the skewed query model. However, the effect of the parameters u and s on the words potentially used in

the queries is quite important. The uniform query model is limited to only 2463 different words, while the

skewed model could use more than 28,000 different words from the vocabulary. Note that in both cases, we

used a vocabulary of 2,898,203 terms to retrieve on average 150,000 documents per query. 1 Therefore, the

skewed model is considered to represent better the real queries.

3.3. Distributed model

In a distributed IR system, the queries are stored in a global queue, which is controlled by one or more

central brokers. Each broker will take one query and, depending on the implemented index organisation
the uniform model, all the terms have the same probability of being selected. Therefore, only those terms with a frequency close

average number of retrieved documents per query could be used. In the skewed model, the probability is directly related to the

equency. Therefore, a wider range of terms could be used, producing more realistic queries.
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(local or global), will send it to a different number of query servers through a network (Ribeiro-Neto &

Barbosa, 1998).

In this work, we do not evaluate the impact of the query arrivals on the performance of an interactive

system. We assume that the system is operating in batch mode and that there are always enough queries to

fill a minimum-size query processing queue. Initially, following the TREC practice, we assume that this
queue has a size equal to 50, i.e. a batch of 50 queries is processed for each experiment.

Moreover, this work is focused on a local index organisation (see Fig. 5). In this organisation, a broker

takes a query out of the queue and sends it to all query servers in the network. Each query server then pro-

cesses the whole query locally, obtains the answer set for that query, ranks the documents, selects a certain

number of documents from the top of the ranking and returns them to the broker. The broker collects all

the local answer sets and combines them into a global and final ranked set of documents. Once a broker

finishes with one query, it is ready to process the next one from the queue. If more brokers are available,

then more than one query could be sent to the query servers, which will process them sequentially.
This process is repeated until the user queries queue is emptied. The total response time starts when the

first query is taken from the queue and finishes when the last query has been processed.

The analytical model previously described is now extended to support the definition of a distributed IR

system, with local index organisation. Some new parameters are defined:
dk, j n
umber of documents of the inverted list for keyword k on query server j
ri, j n
umber of results obtained for query qi on query server j
trmax m
aximum number of top ranked documents returned as the local answer set (1000 by default)
tri, j n
umber of documents from the top ranking in query qi returned as the local answer set for query
server j
ti, j t
otal time (in ms) to complete the processing of query qi at query server j
rqi, j t
ime to receive the query qi for the query server j
rai, j t
ime to receive the local answer set for query qi from the query server j
As a consequence, the time for the query server j to process the query qi is given by:
ti;j ¼ rqi;jþ
tiþ ðP1Þ
ki � tsþ ðP2ÞX
k2qi

dk;j � tr þ ðP3Þ

tc� ri;j ðP4Þ
Fig. 5. Distributed IR model.
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The parameters dk, j and ri, j are estimated using the collection model described in the previous sec-

tion.

As soon as the broker has received all the local results from all the query servers, it must combine them

to obtain the final answer set. Therefore, the total processing time for query qi could be given by:
Table

Param

Param

LANO

LANB

QueryS

DocAn
ti ¼maxðti;jÞþ
maxðrai;jÞþX
j

tri;j � tc
The problem is that the parameters rqi, j and rai, j can not be estimated using an analytical model as they

directly depend on the network load of each moment. Therefore, it is necessary to capture the behaviour

of the network to represent accurately the response times of a distributed IR system.

In our case, the system will contain a single LAN that will be simulated by a single FCFS infinite length

queue. This LAN will manage all the messages sent by the brokers to the query servers and the answers

from the query servers to the brokers. The service time for a request is calculated by the equation:
LANOverhead þ RequestLength� 1

LANBandwith=8
� 1000
In Table 3, we describe the parameters used in the simulation of the network and show their correspond-

ing values. The above RequestLength parameter depends on the type of message sent. If a query is sent to

the query servers, the value of the QuerySize parameter will be used. If the local answer set for query qi is

sent from query server j to the broker, then the length of the packet will be: tri, j·DocAnswerSize.
4. Simulation results

This section describes the results of several experiments, in which we used the simulation model de-

scribed in the previous section. The objective is to investigate different approaches for the distribution

and replication of the collection using a cluster of query servers, and compare the performance between

the different configurations.

All the simulations are based on the 1 TB SPIRIT collection model. We model the queries with the ske-

wed query model and, following a worst case scenario, we assume that each query would approximately
retrieve 8.4 million documents (about 9% of the whole collection). A batch of 50 queries is used to test

the performance, and for each different configuration, five different simulations (with distinct initial seeds)

are run, and the average values for the execution times are calculated for each query.

The experiments are designed to test the performance of different architectures that distribute or repli-

cate in several ways the collection. Initially, a purely distributed system is examined. Next, the effects of the

replications are analysed and then, we examine possible configurations of a clustered system (based on an

asymmetric distribution and replications).
3

eters for the distributed model

eter Value Description

verhead 0.1 ms Network overhead for each packet sent

andwidth 100 Mbps Network speed (in bits per second)

ize 100 bytes Number of bytes sent from the broker to the query servers for each query request

swerSize 8 bytes Number of bytes per document sent in the local answer sets to the broker
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4.1. Distributed system

In this set of experiments, the collection of documents is distributed using the local index organisation

over N query servers, where N=1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 768 and 1024. We simulate a distributed

IR system with 1, 2, 3 and 4 brokers respectively. The results are displayed in Fig. 6.
The best performance is obtained when the query servers are continuously processing queries, without

any idle period while waiting for new queries. If only one broker is used, the query servers will have long

idle periods, especially as the number of query servers increases. As a consequence, the processing time in

the broker for each query also increases (see Fig. 6).

The optimal performance is achieved when two or more brokers are used. In fact, with less than 512

query servers, two brokers are able to provide queries to the servers, continuously and, therefore, the per-

formance of the system is maximised. However, there is still a bottleneck with 768 or 1024 query servers,

with inactivity periods that will reduce the throughput. Three brokers will provide the maximum through-
put, and no further benefit is obtained if we increase the number of brokers.

The bottleneck in the brokers is due to the number of local answer sets received from all the query serv-

ers that must be sorted. Increasing the number of query servers will benefit the processing time in the query

servers, as each server stores a smaller inverted index. On the other hand, the brokers will receive more local

answer sets to be merged into the final result set, as the number of query servers increases. This results in

increasing the processing time in the brokers and eventually, leads to inactivity periods in the query servers

while waiting for new queries from the brokers. In fact, if the number of query servers is high enough, the

performance will start deteriorating at a certain point, independently of the number of brokers used.
The load on the brokers could be lowered in two ways. The first one is to reduce the number of docu-

ments included in the local answer sets by the brokers, with a possible repercussion on the precision and

recall of the system, which must be analysed. The second way is to reduce the number of local lists received

by the brokers, which can be achieved by designing a distributed protocol for the brokers, in order to filter

and reduce the answer sets gradually.

In a system with three brokers, the throughput tends to be stabilised around 0.64 queries/s with 512

query servers, with minor improvements as the number of servers increases (0.66 queries/s with 1024 query

servers).
Working with an optimal configuration of three brokers, Table 4 provides an estimation of the expected

time in minutes to process 50 queries with a distributed IR system, using from 1 to 1024 query servers.
Fig. 6. Throughput for the simulation of a distributed IR system with local index organisation.



Table 4

Estimated time (in min) to process 50 queries by the distributed IR system with 3 brokers

Query servers Time (mm:ss) Query servers Time (mm:ss)

1 46:01 64 02:00

2 24:40 128 01:35

4 13:20 256 01:23

8 07:37 512 01:17

16 04:36 768 01:15

32 02:53 1024 01:15
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4.2. Replicated system

A replicated system is composed of one or more distributed IR systems. Each distributed system indexes

the whole collection, and all the distributed systems that have been replicated, have the same number of

query servers. In this case, the distributed system previously described could be seen as a replicated system,

with only one replica.

In a replicated system, the brokers must decide initially which replica will process the query, and then

broadcast the query to all the query servers in the replica. The objective of the selection of the replicas
is to balance the load through all the replicas to obtain an optimal performance for the whole system.

In our case, a round robin policy is used to distribute the queries to the replicas. Each broker will select

a different initial replica and for each following query the next replica is selected.

Firstly, we analyse the optimal number of brokers required in a generic replicated system. To study this,

we simulated a set of replicated systems, changing the number of brokers used. A summary of the results is

provided in Table 5.

Initially, a system with two replications is simulated, using a variable number of brokers. With only

four brokers, there is a reduction in the performance, following the pattern of the basic distributed system
with two brokers (decreasing with 768 or 1024 hosts per replica). Using five brokers, a nearly optimal
Table 5

Throughput (queries per second) for different replicated IR systems

The ‘‘Query servers’’ column represents the number of servers per replica. Each column indicates the number of replications (R) and the

number of brokers used (B).
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throughput is achieved. A further increase in the number of brokers will only slightly improve the perform-

ance (and simultaneously, the network load).

The case of the systems with three and four replications is quite similar. With six and eight brokers

respectively, there is a decrease in the performance for more than 512 hosts, reproducing the behaviour

of one unique distributed system. As in the previous case, one more broker is sufficient to avoid the bot-
tleneck and serve properly all the query servers.

Generally, for the simulated configurations, the number of brokers necessary to achieve near optimal

performance for a generic replicated system, with R replicas, is given by: 2R+1. With 2R brokers, there

is still a bottleneck when the number of query servers is high, and this extra broker will reduce the idle times

in the hosts. If more brokers are added only slight improvements can be achieved, especially with more than

256 query servers. If the number of replications is further increased, more extra brokers would be necessary

to maintain throughput at the same levels.

Another important point in the replicated systems is the relation between the throughput and the num-
ber of replicas. If a basic distributed system has a throughput of T queries/min, then the theoretically

maximum throughput for a system with R replicas will be T�R.
This is consistent with the results obtained in Table 5, and especially when there are fewer than 128 query

servers per replica. In this case, the throughput obtained for the different replicated systems, with the opti-

mal number of brokers (or more), is slightly below the theoretical value. This is due to the round robin dis-

tribution policy used in the brokers, as it can lead to some small periods of inactivity at certain replicas. In

the future, we will analyse other distribution policies, similar to the one used in (Lu & McKinley, 2000), in

order to improve the throughput up to the optimal theoretical value.
In addition, it is important to stress that if more than 256 (or 512 for some cases) query servers are used

per replica, the performance of the system decreases rapidly (see shaded areas of Table 5).

Fig. 7 shows the throughput of each replicated system (configured with the optimal number of brokers)

versus the total number of query servers in the whole system. If the number of query servers in the system is

less than 1000, the performance improves with each new replica added. However, if the number of query

servers is over this limit, the performance decreases, especially as more replicas are added to the system. In

fact, a system with 4 replicas of 1024 query servers has a lower throughput than a system with 4 replicas of

64 servers each.
This decrease in performance is due to the network. Each replica adds more hosts to the network, which

is used intensively to send the results back to the brokers. As a consequence, the network latency greatly
Fig. 7. Throughput (queries per second) for different replicated IR systems versus the total number of query servers in the system.
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Fig. 8. Network load for different replicated IR systems versus the number of query servers per replica.
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increases with each new replica added (see Fig. 8), making the network a bottleneck for the whole system.

In a system with one replica and 1024 query servers, each byte will reach its destination in 0.36 ms on aver-

age. However, in a system with four replicas and 1024 query servers per replica, the time each byte needs to

reach its destination increases 10 times. Hence, all the messages sent through the network are highly delayed

producing inactivity periods on both query servers and brokers.

The effect of this bottleneck could be reduced in three different (and independent) ways. First, we can

reduce the number of results included in the local answer sets sent from the query servers, although this

may also affect the precision and recall of the IR system. Second, we can reduce the size of the local answer
sets using compression techniques. Third, we employ different network configurations. In this work, we

have only simulated a basic 100 Mbps LAN, although several improvements could be achieved with more

complex configurations, using switches, routers and other network technologies apart from Ethernet, i.e.

ATM or Gigabit Ethernet.

In the next section, we explore the benefits obtained with the second option. The remaining solutions

require a deeper analysis and will be considered in future experiments.

4.2.1. Compression to reduce network congestion

The described network congestion is mainly due to the answers sent by the query servers to the brokers.

Nearly all query servers of each replica will send their local results at the same time and above all, the

amount of information sent is quite high.

As described in Section 3.3, each server will send a maximum of trmax results (with a default value of

1000) and the information about each document is codified using DocAnswerSize bytes (currently, 8 bytes).

This means that each server will send 8000 bytes to the broker, and, in the worst case (1024 servers per rep-

lica), the broker will receive 8000 Kbytes of answers for each query.

To study the benefits of reducing the information sent from the query servers to the brokers, a basic
distributed model (without replication) was simulated, compressing the local answer sets (no compression

and decompression times were considered). This experiment is also equivalent to a reduction in the size

of the local answer sets, although this could affect the retrieval effectiveness of the IR system. We have

made the hypothetical assumption that the local answer sets could be compressed to: 75%, 50%, 25%

and 10%. Table 6 describes the expected latency of the network and the new achieved throughput, as

the information sent to the brokers is being compressed. The study is centred on 256 or more query

servers.



Table 6

Average throughput (T) and average send time per byte in seconds (S), using different compression ratios, in a distributed IR system

(one replica)

Query

servers

100% 75% 50% 25% 10%

T S T S T S T S T S

256 0.601 0.055 0.602 0.056 0.603 0.056 0.604 0.058 0.604 0.062

512 0.644 0.127 0.646 0.127 0.648 0.131 0.65 0.135 0.651 0.14

768 0.662 0.234 0.666 0.222 0.669 0.19 0.672 0.213 0.674 0.225

1024 0.662 0.359 0.667 0.322 0.671 0.295 0.675 0.277 0.678 0.294
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On the contrary to what we were expecting, the average time to send one byte does not decrease signif-

icantly as the compression ratio is increasing. The same seems to happen to the throughput obtained in the

system: there is a slight improvement as the data are being compressed, but not relevant. In fact, with

a compression ratio of 10% (sending 800 bytes, instead of 8000), the throughput improves by less than

2.5%.

The same tests were repeated for the replicated systems and the results are displayed in Fig. 9. The stron-

ger line represents the throughput of the replicated systems with a 10% of compression, while the thinner

line is the baseline (no compression). As was described previously, there is no significant improvement in a
system with only one replica (both lines are superimposed). But, for two, three and four replicas, the effect

of the compression is more important, avoiding the reduction in the performance with a high number of

hosts. In these three cases, the performance of the baseline systems decreased when more than 1000 servers

were simulated. However, the compression of the local answer sets to 10%, resulted in higher throughput.

In fact, the behaviour of each of the replicated systems is analogous to a distributed system, with the per-

formance increasing proportionally to the number of replicas defined.

These results underline the importance of the volume of information sent from the query servers to the

brokers. In a distributed system, the network is not the bottleneck (at least, with the number of hosts sim-
ulated) and therefore, there is little improvement in the throughput even by reducing up to a 10% the vol-

ume of information. However, on a larger system, where the network is the bottleneck, this reduction is

lightening the load of the network and permits the system to achieve its best performance.
Fig. 9. Throughput for several replicated IR systems, with a 10% of compression ratio. The stronger line represents a 10% compression

and the thinner line is the baseline (without compression).



F. Cacheda et al. / Information Processing and Management xxx (2004) xxx–xxx 17

ARTICLE IN PRESS
4.3. Clustered system

A clustered system is divided into groups of computers, where each group operates as an autonomous

distributed and replicated IR system. Each cluster can be composed of a different number of query servers.

We assume that each cluster is responsible for one disjoint part of the whole collection of documents, and
each cluster could use distribution and replication to store its respective index.

The brokers are global for the whole IR system. First, a broker must determine the appropriate cluster

for each query and then, it should broadcast the query to the selected clustered system. If the cluster sup-

ports replication, then the broker will also decide to which replica the query will be sent (e.g. by using the

round robin policy, as described previously).

Different commercial Web IR systems claim to use a clustered system adapted to the distributions of the

queries received, e.g. AllTheWeb (Risvik & Michelsen, 2002). Therefore, the objective of these experiments

is to test if the performance of a replicated IR system could be improved using a clustered system fitted to a
distribution of queries, and how the changes of this distribution will affect the performance.

In the work by Spink et al. (2002), a set of real queries of Web users is categorised into 11 different topics.

Moreover, the variations in the percentage of queries for each topic are analysed in three different years:

2001, 1999 and 1997. Table 7 provides a summary of the 11 topics and the percentage of queries through

the different years. In the simulated systems, once a query is generated, it is automatically assigned to a

topic using these distributions values. In these simulations, we increase the number of queries to 200, which

are classified into one of the 11 topic categories. Moreover, the queries will retrieve 3 million documents on

average to fit the size of the clusters.
In these experiments, we assume that each topic is indexed in a different cluster. The collection is divided

into 11 sub-collections with an inverted file of approximately the same size, that is 8.5 million documents

and, therefore, the 11 defined clusters will index the same number of documents, although using a different

number of query servers. This is done for convenience; in this way, the behaviour of all the clusters will fit

the same optimal throughput curve.

The base sub-collection of 8.5 million documents has been distributed over N query servers, where N=1,

2, 4, 8, 16, 32, 64, 128, 256 and 512. The throughput matches the previous results displayed in Fig. 6, with

an optimal configuration of two brokers. The throughput values are displayed in Table 8.
Two different configurations have been tested for the clustered system. The first one has 128 query serv-

ers and the second one has 1024 query servers. Each cluster is assigned a number of query servers propor-

tional to the percentage of queries that it is expected to receive (see Table 7).
Table 7

Distribution of queries across general topic categories, and configurations for the clustered systems simulated

Topics 2001 (%) 1999 (%) 1997 (%) Config 1 Config 2

Commerce 24.755 24.73 13.03 8*4 63*4

People 19.754 20.53 6.43 6*4 51*4

Non-English 11.355 7.03 3.84 5*3 39*3

Computers 9.654 11.13 12.24 4*3 33*3

Pornography 8.555 7.73 16.54 5*2 44*2

Sciences 7.554 8.02 9.24 5*2 38*2

Entertainment 6.655 7.73 19.64 4*2 34*2

Education 4.554 5.52 5.33 6*1 47*1

Society 3.955 4.43 5.44 5*1 41*1

Government 2.054 1.82 3.13 3*1 21*1

Arts 1.155 1.33 5.14 2*1 12*1



Table 8

Average throughput (queries/s) for the basic sub-collection (8.5 million documents), in a distributed IR system

Query servers

1 2 4 8 16 32 64 128 256 512

Throughput 0.05 0.081 0.14 0.228 0.349 0.476 0.573 0.637 0.671 0.687
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The clustered systems are configured according to the most recent distribution of the topics, correspond-

ing to the year 2001. In Table 7, columns ‘‘Config 1’’ and ‘‘Config 2’’ describe the query servers assigned to

each topic, respectively. The first number corresponds to the number of distributed query servers, and the

second one stands for the number of replicas in each cluster (the excepted throughput for each topic con-

figuration can be estimated from Table 8). The total number of query servers assigned to each topic is asso-

ciated with the distribution of the topics on the year 2001. For each topic, the distribution and replication

of the query servers have been chosen analogously in both configurations, trying to maximise the replica-

tions for the most popular topics.
For the first configuration, the baseline is a replicated IR system, with 4 replications of 32 query servers

each. On the other hand, the baseline for the second configuration is a replicated system with 4 replicas of

256 query servers each.

Fig. 10 presents the box diagram for the response time for the first 100 queries processed by the tested

systems (queries 1–100). All the systems were tested for queries following the topics of years 2001, 1999 and

1997. Obviously, the performance of a replicated IR system does not depend on the type of queries (the

baseline is independent of this factor), and the response times for the clustered system with 128 servers

are labeled ‘‘Config 1-2001’’, ‘‘Config 1-1999’’ and ‘‘Config 1-1997’’, respectively.
The first clear conclusion is that the clustered system does not outperform a replicated system. The rep-

licated system will process one query in 4682 ms, while the clustered system optimally configured for the

2001 queries will just process one query in 7806 ms (approximately the same performance as a system with

two replicas of 64 servers). On the contrary, the clustered system reduces greatly the network load with

0.0008 ms/byte, versus the replicated system with 0.0044 ms/byte.

On the other hand, the clustered system seems sensitive to the changes in the topics of the queries

through time. For the queries of the year 1999, the performance is nearly the same, 8068 ms per query,
Fig. 10. Clustered IR systems vs. a replicated IR system. Configuration 1: 128 query servers.



Fig. 11. Clustered IR systems vs. a replicated IR system. Configuration 2: 1024 query servers.
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while for the queries from 1997 the performance drops to 9212 ms per query. In fact, the higher differences

for the topic distributions are between the years 2001 and 1997 (see Table 7).

Note that the presence of atypical data reflects the effect of the changes in the topics through the time. In

fact, the baseline also happens to have some atypical data but very near the confidence interval, due to the

distribution of the queries over many servers. In a clustered system, with a reduced amount of hosts per

cluster, some heavy queries will produce higher response times. This is more notable when the topics of

the queries are changed (1997 queries), because the smaller clusters may have to cope with a higher number
of queries than initially expected.

In the second configuration, the clustered system and the replicated system have processed the queries

matching the 2001, 1999 and 1997 distributions. The response times for the clustered system with 1024

query servers are labeled ‘‘Config 2-2001’’, ‘‘Config 2-1999’’ and ‘‘Config 2-1997’’, respectively. Fig. 11

shows the box diagram for the response time for the first 100 queries processed for all these systems.

In this case, the clustered system outperforms the baseline, for all query distributions, through the years.

The replicated system requires 3313 ms per query, while the clustered system for the 2001 queries will proc-

ess one query in 2665 ms on average. Regarding the network load, while the replicated system needs, on
average, 0.112 ms to send one byte, the clustered system uses only 0.007 ms per byte, on average.

This configuration is also sensitive to the changes in the topics of the queries, but to a smaller degree. For

the queries from 1999, the performance is slightly better, 2630 ms per query, but for the queries from 1997,

the performance drops to 2938 ms per query (still outperforming the baseline).

In this configuration, the increase in the number of query servers reduces the size of the local indexes

(even for the smaller clusters) and therefore, the increase in the response times is less significant. At the

same time, the different clusters can support more easily the changes in the query topics through the time.

In this configuration, for the 1997 queries, the performance decreases by 9%, while with 128 query servers
the throughput decreased by 14%.
5. Conclusions

In this paper, we have described different architectures for a distributed IR system, analysing the optimal

design (i.e. number of brokers) and estimating themaximum performance achieved withmultiple configurations
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(from 1 up to 4096 query servers). We have studied the performance of a distributed, replicated and clustered

system, and we have established the bottlenecks and limitations of each possible configuration. Our work

extends previous works with respect to both the size of the collection and the number of query servers sim-

ulated, and confirms some of the previous findings in the literature (see Section 2).

Indeed, we have identified two main bottlenecks in a distributed and replicated IR system: the brokers
and the network. The load on the brokers is mainly due to the number of local answer sets to be sorted

(characteristic of a distributed system), as it was also shown by Cahoon and McKinley (1996). Therefore,

the load can be improved by reducing the number of documents included in the local answer sets by all the

query servers, which could affect precision and recall. Another way is to reduce the number of local lists

sent to the brokers, by designing more complex and elaborate distributed protocols.

The network bottleneck is due to the large number of query servers and the continuous data interchange

with the brokers, especially in a replicated IR system. The network load could be alleviated by reducing the

number of bytes sent over the network or by using different network configurations and technologies. The
network traffic can be limited by reducing the number of results in each local answer set (with the additional

benefit over the brokers), or by compressing the local answer set before sending it. The latter was tested by

compressing the local answer sets up to a 10%. In this case, the network load was substantially reduced and

therefore, the performance obtained by the replicated system was nearly optimal, as described in Fig. 9.

Moreover, it is important to recall that we have modeled the network as a single LAN. This could have

an impact on the obtained performance measures. In the future, we intend to use a more realistic network

model for our distributed IR system.

The analysis of the clustered systems indicates that the best throughput of these systems is achieved when
a large number of query servers is used, i.e. greater than 1000 in total. In this case, the clustered system

outperforms the replicated one. A clustered system will reduce the network load substantially, as only a

fraction of the query servers will process and answer each query. Therefore, in a replicated system, the net-

work load increases (and the throughput improvements are slowed) as the number of servers increases.

While in a clustered system the processing times in the clustered query servers could be slightly higher,

the local answers will reach faster the broker, and the brokers will receive fewer answers, thus processing

the final results more efficiently.

However, the clustered systems must be configured a priori, depending on the distribution of the queries
that the IR system would receive. Therefore, to avoid negative effects on the performance, it is important to

detect changes in the distribution of the queries through the time and re-configure the clusters of the system

accordingly.

We also plan to study different solutions for the brokers and network bottlenecks, as well as their impact

on the retrieval performance. Moreover, these results could be used to extend a basic centralised IR system

to a distributed one, and then analyse the correspondence between the expected and the actual perform-

ance. In general, we believe that the results in this paper are useful to any group interested in handling a

very large collection like SPIRIT, or building a large-scale search engine.
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