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Abstract

In this paper, we aim to improve query expansion for ad-hoc retrieval, by proposing a more fine-grained term reweigh-
ting process. This fine-grained process uses statistics from the representation of documents in various fields, such as their
titles, the anchor text of their incoming links, and their body content. The contribution of this paper is twofold: First, we
propose a novel query expansion mechanism on fields by combining field evidence available in a corpora. Second, we pro-
pose an adaptive query expansion mechanism that selects an appropriate collection resource, either the local collection, or
a high-quality external resource, for query expansion on a per-query basis. The two proposed query expansion approaches
are thoroughly evaluated using two standard Text Retrieval Conference (TREC) Web collections, namely the WT10G col-
lection and the large-scale .GOV2 collection. From the experimental results, we observe a statistically significant improve-
ment compared with the baselines. Moreover, we conclude that the adaptive query expansion mechanism is very effective
when the external collection used is much larger than the local collection.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In Information Retrieval (IR), query expansion usually refers to the technique that uses blind relevance
feedback to expand a query with new query terms, and reweigh the query terms, by taking into account a
pseudo relevance set (Rocchio, 1971; Amati, 2003). Usually, the pseudo relevance set consists of the top-
ranked documents returned by the first-pass retrieval. These top-ranked documents are assumed to be relevant
to the topic. Query expansion has proved to be an effective technique for ad-hoc retrieval. For example, in
previous Text Retrieval Conference (TREC) ad-hoc tasks, a consistent improvement brought by query expan-
sion has been observed (for example, see Hawking, 2000; Hawking & Craswell, 2001).
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However, in some cases, query expansion can lead to little improvement in the retrieval performance. For
example, in the TREC 2004 Terabyte track, some participants found that query expansion was not helpful for
ad-hoc retrieval (Attardi, Esuli, & Patel, 2004; Plachouras, He, & Ounis, 2004). As stressed in Amati, Carpi-
neto, and Romano (2004a), the effectiveness of query expansion is correlated with the quality of the top-
ranked documents returned by the first-pass retrieval, on which query expansion is based. The more closely
the documents returned by the first-pass retrieval are related to the topic, the better the performance that
the query expansion mechanism can achieve. In other words, if the top-ranked documents are poor, this
can lead to a failure for query expansion to improve the retrieval performance (Amati et al., 2004a; Yom-
Tov, Fine, Carmel, & Darlow, 2005).

Improving the effectiveness and robustness of query expansion has been the focus of some previous work.
Two main approaches have been proposed. The first one is selective query expansion, which disables query
expansion if query expansion is predicted to be detrimental to retrieval (Amati et al., 2004a; Cronen-
Townsend, Zhou, & Croft, 2004; Yom-Tov et al., 2005). The second one is the collection enrichment
approach, which performs query expansion using a large high quality external collection, and then retrieves
from the local collection using the expanded query (Kwok & Chan, 1998). A high quality collection refers to
a collection, in which most documents are highly informative. For example, the TREC newswire collection
is a high-quality one, since each of its documents usually contains mostly informative terms and very little
noise. In this paper, the notion of local collection refers to the collection from which the final retrieved doc-
uments are returned, and the notion of external collection refers to any other distinct collection. In this
paper, we aim to further improve the effectiveness and robustness of query expansion by two different
approaches.

First, we propose a novel query expansion mechanism on fields, which appropriately uses field evidence
available in a corpora. For example, a Web document can be represented by combining fields, such as its
title, the anchor text of its incoming links, and the body of its text. The queries can then be reweighed and
expanded using this more refined available information. We suggest that the performance of query expan-
sion is related not only to the quality of the top-ranked documents returned by the first-pass retrieval, but
also to the quality of the query term reweighting. We believe that combining evidence from different doc-
ument fields can refine the statistics of the query terms, and hence improve the query term reweighting.
Moreover, the combination of field evidence is applied in the first-pass retrieval in order to refine the quality
of the top-ranked documents.

Second, we propose a low-cost adaptive decision mechanism for the application of query expansion. The
decision mechanism is based on the pre-retrieval performance prediction technique (He & Ounis, 2005).
The proposed mechanism applies both collection enrichment and selective query expansion techniques. In
the proposed adaptive query expansion mechanism, the expansion of the query can be either local, using doc-
uments in the local collection, or external, using an external resource. The adaptive mechanism predicts the
benefit of query expansion using either option, and adopts the most effective one. If both options are predicted
to lead to the degradation of the query performance, then query expansion is disabled.

Our new query expansion techniques are based on the Divergence from Randomness (DFR) framework,
which measures the informativeness of a term in a document by the divergence of the term’s distribution in
the document from a random distribution (Amati, 2003). The idea of combining fields for the first-pass retrie-
val has been studied in Robertson, Zaragoza, and Taylor (2004) Zaragoza, Craswell, Taylor, Saria, and Rob-
ertson (2004) by extending BM25 (Robertson, Walker, Beaulieu, Gatford, & Payne, 1995) to the field retrieval
BM25F model, and by extending PL2 (Amati, 2003) to the field retrieval PL2F model (Macdonald, He, Plac-
houras, & Ounis, 2005). In this paper, similarly to the approach in Macdonald et al. (2005) and Robertson
et al. (2004), we extend the parameter-free DLH model (Amati, 2006) to field retrieval.

The remainder of this paper is organised as follows. We introduce the related works in Section 2. In
Sections 3 and 4, we propose the query expansion on fields and the adaptive query expansion mechanism,
respectively. The two new approaches are extensively evaluated on two standard TREC Web collections.
The document weighting model used in the experiments in Sections 3 and 4 is a DFR document weighting
model. In Section 5, we present experiments using BM25F to assess the impact of a different document
weighting model on the experimental results. In Section 6, we conclude the work and suggest future research
directions.
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2. Related works

In Section 2.1, we introduce the BM25F model on fields. We introduce a Divergence from Randomness
(DFR) document weighting model for the first-pass retrieval in Section 2.2, and introduce a DFR-based term
weighting model for query expansion in Section 2.3. These two DFR-based models will be later extended to
handle fields. In Section 2.4, we introduce the selective query expansion and collection enrichment techniques,
which will be applied in our proposed adaptive query expansion mechanism.

2.1. The BM25F field retrieval document weighting model

In the BM25F model, the relevance score of a document d for a query Q is given by (Robertson et al., 2004):
scoreðd;QÞ ¼
X
t2Q

wð1Þ
ðk1 þ 1Þtfn

k1 þ tfn
ðk3 þ 1Þqtf

k3 þ qtf
ð1Þ
where qtf is the query term frequency and k1 and k3 are the parameters. The default setting is k1 = 1.2 and
k3 = 1000 (Robertson et al., 1995). w(1) is the idf factor, which is given by:
wð1Þ ¼ log2

N � N t þ 0:5

N t þ 0:5
N is the number of documents in the whole collection and Nt is the document frequency of term t.
The normalised term frequency tfn is given by a so-called per-field normalisation component, where term

frequency is normalised in a per-field basis (Zaragoza et al., 2004). This per-field normalisation component
applies a linear combination of the normalised term frequencies from different fields as follows:
tfn ¼
X

f

wf �
tff

ð1� bfÞ þ bf � lf

avg lf

ð2Þ
where wf is the weight of a field f, tff the frequency of the query term in the field f of the document, bf the term
frequency normalisation hyper-parameter of field f, lf the number of tokens in field f of the document, and
avg_lf is the average length of field f in the collection, i.e. the average number of tokens in field f.

Note that the BM25 model’s formula (Robertson et al., 1995) is the same as Eq. (1), while its normalised
term frequency tfn is given by its term frequency normalisation component:
tfn ¼ tf
ð1� bÞ þ b � l

avg l

ð3Þ
where tf is the term frequency in the documents, b the term frequency normalisation hyper-parameter, l the
document length, and avg_l is the average document length in the collection.

2.2. The DLH document weighting model

The DLH model is a generalisation of the parameter-free hypergeometric DFR model in a binomial case
(Amati, 2006). Previous probabilistic weighting models, e.g. BM25 (Robertson et al., 1995), consider the
occurrences of a query term in a document to be samples from the document. Unlike BM25, the hypergeo-
metric model assumes that the occurrences of a query term in a document are samples from the whole collec-
tion, instead of from the document. The DLH model does not have a term frequency normalisation
component, and does not have any parameters that require relevance tuning. Therefore, it has no need for
expensive training with relevance judgement, which is not always available in a practical setting. In other
words, all the variables of the document weighting formula are automatically set from the collection statistics.
Therefore, the hypergeometric model does not have the need for tuning its parameters, in order to achieve an
optimised retrieval performance. In the DLH model, the relevance score of a document d for a query Q is
given by:
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scoreðd;QÞ ¼
X
t2Q

qtw � 1

tf þ 0:5
� log2

tf � avg l
l

� N
F

� �
þ 0:5log2 2ptf 1� tf

l

� �� �� �
ð4Þ
where tf is the frequency of the term in document d, avg_l the average document length in the collection, l the
document length, and qtw is the query term weight. This is given by qtf/qtfmax, where qtf is the query term
frequency and qtfmax is the maximum qtf among all the query terms. F is the frequency of the term in the col-
lection and N is the number of documents in the collection. Note that the DLH model in Eq. (4) does not have
a tf normalisation component, as this is assumed to be inherent to the model.

2.3. Divergence from randomness query expansion mechanism

The Divergence from Randomness (DFR) framework employs a query expansion mechanism that is a gen-
eralisation of Rocchio’s method (Rocchio, 1971). The DFR query expansion mechanism has two steps.

First, it applies a DFR term weighting model to measure the informativeness of the terms in the top-ranked
documents. The idea of the DFR term weighting model is to infer the informativeness of a term by the diver-
gence of its distribution in the top-ranked documents from a random distribution. The most effective DFR
term weighting model is the Bo1 model that uses the Bose–Einstein statistics (Amati, 2003; Macdonald
et al., 2005; Plachouras et al., 2004). Using this model, the weight w of a term t in the top-ranked documents
is given by:
wðtÞ ¼ tfx � log2

1þ P n

P n
þ log2ð1þ P nÞ ð5Þ
where tfx is the frequency of the query term in the top-ranked documents, Pn is given by F
N, F the frequency of

the term in the collection, and N is the number of documents in the collection. In this paper, following the
default setting of Amati (2003), we extract the 10 most informative terms from the top 3 returned documents.
The original query terms may also appear in the 10 extracted terms.

In the second step, the DFR query expansion mechanism expands the query by merging the extracted terms
with the original query terms. The query term weight qtw is given by a parameter-free query expansion
formula:
qtw ¼ qtf
qtfmax

þ wðtÞ
limF!tfx wðtÞ

¼ F maxlog2

1þ P n;max

P n;max

þ log2ð1þ P n;maxÞ ð6Þ
where limF!tfx wðtÞ is the upper bound of w(t), Pn,max is given by Fmax/N, and Fmax is the frequency F of the
term with the maximum w(t) in the top-ranked documents. If an original query term does not appear in the
most informative terms extracted from the top-ranked documents, its query term weight remains equal to
the original one. Note again that the above query expansion formula does not have any parameter that
requires tuning.

2.4. Selective query expansion and collection enrichment

The basic idea of selective query expansion is to disable query expansion if the query is predicted to perform
poorly. A selective query expansion mechanism was proposed by Amati, Carpineto, and Romano (2004b) in
the context of the DFR framework. It predicts the performance of query expansion by the query difficulty,
which looks at the divergence of a query term’s distribution in the top-ranked documents from this distribu-
tion in the whole collection. The larger the divergence is, the better retrieval performance query expansion can
result in. An alternate selective query expansion mechanism was proposed by Cronen-Townsend et al. (2004)
in the context of language modeling. In the latter approach, the query performance is predicted using the
clarity score (Cronen-Townsend, Zhou, & Croft, 2002), which is defined as the Kullback–Leibler divergence
of the query model from the collection model. Again, the larger the divergence is, the better retrieval
performance query expansion can provide.

In Kwok and Chan (1998) studied the idea of using an external resource for query expansion. They sug-
gested that the failure of query expansion is caused by the lack of relevant documents in the local collection.
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Therefore, the performance of query expansion can be improved by using a large external collection, which
possibly contains more relevant documents and has better collection statistics for the query term reweighting.
This collection enrichment1 approach was later applied in the TREC Robust tracks (Grunfeld, Kwok, Dinstl,
& Deng, 2003; Kwok, Grunfeld, Sun, & Deng, 2004). Moreover, Singhal et al. proposed the conservative col-
lection enrichment approach to handle the case where the external collection is not related to the topic (Sing-
hal, Choi, Hindle, & Lewis, 1998). In the conservative collection enrichment approach, the query is expanded
on the local collection, and the external collection is only used for query term reweighting.

In this paper, we extend the DLH document weighting model and the Bo1 term weighting model for query
expansion to field retrieval. Moreover, we devise a novel adaptive query expansion mechanism that applies
both selective query expansion and collection enrichment techniques. This mechanism selects the appropriate
resource, either the local collection, or an external resource, for query expansion on a per-query basis on fields
in Section 3 and the adaptive query expansion mechanism in Section 4.
3. Combining field evidence for query expansion

In this section, we present a query expansion mechanism on fields that is based on an extension of the Bo1
model for query expansion. We also extend the DLH model to handle fields. In Robertson et al. (2004), Rob-
ertson et al. denote the BM25 model on fields as the BM25F model. In this work, we follow their notation by
denoting the DLH model on fields as the DLHF model, and the Bo1 model on fields as the Bo1F model.

We propose the DLHF model in Section 3.1 and the query expansion mechanism on fields in Section 3.2.
The related evaluation is presented in Section 3.3.
3.1. The DLHF field retrieval document weighting model

In this section, we describe how we extend the DLH model to field retrieval in order to improve the top-
ranked documents from the first-pass retrieval.

Unlike the BM25 model (see Eq. (1)), the DLH model does not have an explicit term frequency normali-
sation component. Therefore, in order to adapt it to field retrieval, we can directly combine the term frequen-
cies in different fields without normalising the term frequency.

In our DLHF field retrieval model, the term frequency tf in the document is a linear combination of the
term frequencies in different fields of the document. Similarly to the BM25F model, each field is associated
with a weight. The linear combination is given below:
1 In
tf ¼
X

f

wf � tff ð7Þ
where wf is the weight of a field f, and tff is the term frequency in field f of the document.
The DLHF field retrieval model is defined as Eq. (4), where the term frequency tf is given by the above

linear combination. We use the DLHF model to perform both the first-pass retrieval, and the retrieval using
the expanded query. Note that the DLHF model has fewer parameters than the BM25F model (see Section
2.1), in the sense that the DLHF model does not have any term frequency normalisation hyper-parameters
(bf in BM25F).
3.2. Query expansion framework on fields

In this section, we propose a query expansion mechanism on fields. We aim to improve the quality of the
query term reweighting by refining the statistics of the query terms. We suggest that in addition to the quality
of the top-ranked documents, the quality of the query term reweighting is also related to the performance of
query expansion. Combining field evidence can provide better statistics for the query terms. Therefore, it may
Macdonald et al. (2005), we called the process that uses an external resource for query expansion the external expansion.
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improve query term reweighting and achieve a better performance of query expansion. This assumption will be
evaluated in Section 3.3.

In order to combine the statistics from different fields, we could compute a term weight for each field sep-
arately, then combine them afterwards. As stressed in Robertson et al. (2004), this method suffers from the risk
of breaking the non-linear saturation of term frequency in the weighting model. Therefore, we combine the
frequencies of the query term in the top-ranked documents directly, and then weight the term based on the
combined statistics.

We apply a linear combination to sum the term frequencies in different fields. The term frequency in each
field of the top-ranked documents is tfxf, and each field is associated with a weight wqf. The term frequency tfx

in the top-ranked documents is given by:
2 Mo
3 Re
tfx ¼
X

f

wqf � tfxf ð8Þ
where wqf is the weight of a field f in the top-ranked documents. Each weight wqf reflects the relative impor-
tance of the associated field in the top-ranked documents. tfxf is the term frequency in field f in the top-ranked
documents.

We then define the Bo1F term weighting model on fields as Eq. (5), where the term frequency in the top-
ranked documents tfx is given by Eq. (8).

Using the Bo1F model, the proposed query expansion mechanism on fields can be described as follows:

� First, we run a first-pass retrieval and obtain the top-ranked documents.
� Second, we compute the weights of the terms in the top-ranked documents using the Bo1F term weighting

model on fields.
� Third, we extract the terms with the highest term weights from the top-ranked documents, merge them with

the original query terms, and then eweigh the terms in the expanded query using Eq. (6).

We evaluate the proposed query expansion mechanism on fields in the next section.

3.3. Evaluation of the query expansion mechanism on fields

In Section 3.3.1, we introduce the experimental setting of the evaluation of our query expansion mechanism
on fields. We present the results in Section 3.3.2.

3.3.1. Experimental setting

Our experiments are conducted using the Terrier platform. Terrier is a modular platform for the rapid
development of large-scale Information Retrieval applications, providing indexing and retrieval functional-
ities. It is developed at the University of Glasgow.2

In this section, we present experiments that aim to evaluate our query expansion mechanism on fields. We
use a Web retrieval context where a document is represented using three fields, namely its title, the anchor text
of its incoming links, and the body of its text.

We use two standard TREC Web collections, namely the WT10G and .GOV2 collections.3 The WT10G
collection is a small crawl of Web documents, which was used in the TREC 9, 10 Web tracks. It contains
1,692,096 Web documents, and has 10 G of data. The .GOV2 collection, which contains 25,205,179 Web doc-
uments and 426 G of data, is a crawl from the .gov domain. This collection has been employed in the TREC 13
and 14 Terabyte tracks (Clarke, Craswell, & Soboroff, 2004; Clarke, Scholer, & Soboroff, 2005). GOV2 is the
largest TREC test collection. We use these two different standard Web collections to test the impact of the
collection size on the query expansion mechanism on fields.

For the test topics, we use the TREC 9 & 10 Web ad-hoc tasks, and the TREC 13 & 14 Terabyte ad-hoc
tasks, including the latest TREC ad-hoc topics in the TREC 14 Terabyte track. Table 1 lists the topic numbers
re information about Terrier can be found at the following URL: http://ir.dcs.gla.ac.uk/terrier/.
lated information on these two collections can be found from http://ir.dcs.gla.ac.uk/test_collections/.

http://ir.dcs.gla.ac.uk/terrier/
http://ir.dcs.gla.ac.uk/test_collections/


Table 1
The TREC tasks and topic numbers associated with each collection

Coll. Task Topic#

WT10G TREC 9 Web ad-hoc 451–500
WT10G TREC 10 Web ad-hoc 501–550
.GOV2 TREC 13 Terabyte ad-hoc 701–750
.GOV2 TREC 14 Terabyte ad-hoc 751–800
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associated with each TREC task on each Web collection used. Each task involves 50 topics, and we have 100
topics for each Web collection used.

Each TREC topic has three fields, namely title, description and narrative. In our experiments, we only use
the titles. The reason for using only the titles is that it is a practical and realistic setting, since real queries on
the Web are usually very short (Silverstein, Henzinger, & Marais, 1998).

We create indices for the three fields, i.e. body, title, and anchor text, using the WT10G and .GOV2 col-
lections, respectively. Statistics of the three fields in the two collections are provided in Table 2. We can see
that the size of the body field is much larger than the other two.

The tokens in the collections used are stopped using a standard stop-word list, and stemmed using Porter’s
stemming algorithm.

Our query expansion on fields involves six parameters, namely the weights (wf) of the three used fields in the
DLHF model, and the weights (wqf) of the three used fields in the query expansion mechanism. Since it would
be very time-consuming to optimise all six parameters, we make the following assumptions to reduce the num-
ber of parameters to two:

1. For a particular field f, we assume that wf = wqf. This is reasonable because the weight of a field reflects the
contribution of the field in the retrieval, which should be consistent in document weighting and in query
expansion.

2. Similarly to the work in Robertson et al. (2004), we set the weight of the body field to 1.

By making the above two assumptions, we reduce the number of parameters to two, namely the weights of
the anchor text and title fields. In the rest of this paper, we use wa and wt to denote the weights of the anchor
text and title fields, respectively.

To optimise the weights of the anchor text and title fields, we do a two-dimensional data sweeping within
[0,2] with an interval of 0.1, and then choose the weights that give the best mean average precision (MAP)
using relevance assessments on the test topics.

Our baseline is the content-based query expansion, which is equivalent to applying a normal query expan-
sion over the three document fields. Using the WT10G and .GOV2 collections, we compare our query expan-
sion mechanism on fields with the baseline. Moreover, since real user queries usually do not have relevance
assessments available, we conduct experiments to find out what happens if the field weights are trained based
Table 2
The number of tokens and the average document length (avg_l) in each field of the two collections

Field #tokens avg_l

WT10G, N: 1,692,096
Body 668,150,053 394.86
Anchor text 22,596,525 13.35
Title 7,479,058 4.42
Total 698,225,636 412.64

.GOV2, N: 25,205,179
Body 16,331,848,283 647.96
Anchor text 966,003,355 38.32
Title 132,916,051 5.27
Total 17,430,767,689 691.56

N is the number of documents in each collection.
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on a sample of test queries. Each of the two collections used is associated to 100 topics used in two TREC ad-
hoc tasks. On each collection used, we conduct a two-fold holdout evaluation. In each fold, we train the field
weights on the 50 topics used in one associated ad-hoc task, and test the effectiveness of our query expansion
mechanism on the 50 topics used in another associated TREC ad-hoc task, using the field weights obtained in
training. In the next section, we provide analysis on the experimental results.
3.3.2. Experimental results
Table 3 compares the mean average precision (MAP) obtained by the content-based query expansion (QE)

and by our query expansion mechanism on fields (QEF). wa and wt are the optimal weights of anchor text and
title, which result in the best obtained MAP by the query expansion mechanism on fields. D% indicates the
difference between the two MAP values in percentage. The p-value is given by the Wilcoxon matched-pairs
signed-ranks test.

From Table 3, we observe an improvement brought by our query expansion mechanism on fields. Accord-
ing to the Wilcoxon matched-pairs signed-ranks test, the improvement is statistically significant at 0.05 level
on both collections. In our experiments, we do not observe a remarkable impact of the collection size on the
performance of the query expansion mechanism on fields.

Moreover, we find that anchor text is not very useful in refining query term reweighting. Indeed, the opti-
mal weight of the anchor text field is 0 or 0.1 for the four associated TREC ad-hoc tasks, (see column wa of
Table 3). This indicates that the anchor text information makes no (wa = 0), or only a little contribution
(wa = 0.1), to improving query term reweighting. We suggest that this is because a query term usually repeat-
edly occurs in the documents where the term appears. Consequently, the frequency of the query term in the
anchor text field is so high that a low anchor text field weight is required to reduce the contribution of anchor
text on the document ranking. On the other hand, it is worth giving a relatively large weight to the title field
(see column wt of Table 3). Therefore, the title field is a good evidence for improving query expansion.

Table 4 contains the experimental results of the two-fold holdout evaluation, which uses a sample of the
associated TREC topics for training, and uses the other ones for testing. Table 4 shows that when the topics
Table 3
The mean average precision obtained by content-based query expansion (QE) and by our query expansion mechanism on fields (QEF),
respectively

TREC QE QEF wa wt D% p-Value + � =

TREC 9 0.1792 0.1991 0.0 0.0 +11.10 2.986e � 06* 40 7 3
TREC 10 0.2142 0.2421 0.1 0.4 +13.02 2.480e � 06* 43 6 1
TREC 9 & 10 0.1967 0.2206 0.0 0.1 +10.83 2.200e � 11* 83 13 4

TREC 13 0.2420 0.2639 0.1 1.0 +9.05 3.624e � 04* 38 11 1
TREC 14 0.3248 0.3482 0.1 0.5 +7.20 1.601e � 04* 35 14 1
TREC 13 & 14 0.2838 0.3048 0.1 0.4 +7.40 1.06e � 05* 68 31 1

wa and wt are the optimal weights of anchor text and title, respectively. The p-value is given by the Wilcoxon matched-pairs signed-ranks
test. A star indicates a statistically significant difference at 0.05 level. +, �, and = indicate for how many queries QEF results in
improvement, degradation and no change in the retrieval performance, respectively.

Table 4
The mean average precision obtained by the content-based query expansion (QE) and by our query expansion mechanism on fields (QEF),
respectively

TREC QE QEF D% p-Value

TREC 9 0.1811 0.1921 +6.07 5.576e � 04*

TREC 10 0.2205 0.2376 +7.76 5.371e � 04*

TREC 13 0.2420 0.2576 +6.45 2.045e � 03*

TREC 14 0.3248 0.3468 +6.77 6.555e � 04*

The field weights are obtained by training on a sample of the TREC topics. The p-value is given by the Wilcoxon matched-pairs signed-
ranks test. A star indicates a statistically significant difference at 0.05 level.
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used for training and testing are different, our query expansion mechanism on fields can still outperform the
baseline. Overall, our query expansion mechanism on fields has achieved effective performance in our exper-
iments on the two TREC Web collections used.

4. Adaptive query expansion

In this section, we propose a low-cost adaptive query expansion mechanism, which applies both the collec-
tion enrichment and selective query expansion techniques. The idea is to choose an appropriate resource
rather than using a unique collection, either the local collection or an external collection, for query expansion.
The proposed adaptive mechanism also uses a query performance prediction technique. We describe the pro-
posed mechanism in Section 4.1, and present the related evaluation in Section 4.2.

4.1. Decision mechanism

We propose a new low-cost adaptive decision mechanism for the application of query expansion on a per-
query basis. The decision mechanism is based on a pre-retrieval performance prediction technique. We hypoth-
esise that a high quality external collection could bring more useful information for query expansion and lead to a
better query term reweighting. Therefore, it could retrieve more relevant documents. The expansion of the query
can be either local, using documents from the local collection, or external, using collection enrichment. The adap-
tive mechanism predicts the benefit of query expansion using either option, and uses the most effective one. If
both options are predicted to lead to the degradation of the query performance, then query expansion is disabled.

We use the Average Inverse Collection Term Frequency (AvICTF) (He & Ounis, 2005) to predict the qual-
ity of the top-ranked documents, which is the average of the inverse collection term frequency (ICTF) (Kwok
et al., 1996) of each query term. The definition of AvICTF is as follows:
AvICTF ¼
log2

Q
Q

tokencoll

F

ql
ð9Þ
In the above definition, Q refers to the query, tokencoll the number of tokens in the whole collection, ql the
query length, and F is the frequency of the term in the collection. By definition, a high AvICTF value predicts
a good query performance, and a low AvICTF value predicts a poor query performance. From this definition,
given a query, the AvICTF’s value is comparable for different collections. Therefore, we can devise a unique
thresholding mechanism over the two collections for the adaptive query expansion.

We could have used other query performance predictors, such as the query difficulty (Amati, 2003) and the
clarity score (Cronen-Townsend et al., 2002). However, unlike these predictors, using AvICTF avoids the
actual retrieval on both local and external collections before making a decision for query expansion. It uses
only the collection statistics of the query terms to predict the query performance. Therefore, our adaptive
query expansion mechanism is very low-cost. Besides, as shown in He and Ounis (2005), it is a reliable query
performance predictor.

Using the AvICTF predictor, the decision mechanism operates on a per-query basis, and can be described
as follows:

� First, given a local collection and an external one, we compute the AvICTF on both local and external
collections.
� If the AvICTF values on both collections are lower than a threshold, we disable query expansion.
� Otherwise, we apply query expansion on the collection that has the highest AvICTF value.

In the next section, we conduct experiments to evaluate our adaptive query expansion mechanism.

4.2. Evaluation of the adaptive query expansion mechanism

In this section, we evaluate our adaptive query expansion mechanism. We introduce the experimental set-
ting in Section 4.2.1 and present the results in Section 4.2.2.



Table 5
The obtained mean average precision (MAP) by the query expansion on fields (QEF), query expansion using external collection only
(ExQEF) and the adaptive query expansion (AdapQEF), respectively

Coll. QEF ExQEF AdapQEF D% p-value

WT10G 0.2197 0.2261 0.2362 +4.47 2.7e � 10*

.GOV2 0.3528 0.3265 0.3528 0 –

The p-values are given by the sign test between AdapQEF and the best between QEF and ExQEF. D% indicates the difference between
AdapQEF and the best retrieval performance between QEF and ExQEF. A star indicates a statistically significant difference at 0.05 level.
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4.2.1. Experimental settings

In this section, the used local collections and topics, the weighting models and their settings are the same as
in Section 3.3.

To create an external collection for the collection enrichment, we need to make sure that the external col-
lection is of a high quality so that it can bring useful information for query expansion. We suggest that the
TREC newswire collections and the English Wikipedia domain are good resources. Therefore, we form an
external collection by merging the TREC disks 1–5 collections4 and a crawl of the English Wikipedia5 in early
July, 2005. The TREC disks 1–5 collections contain newswire articles from various sources, e.g. the Financial
Times, the Wall Street Journal, etc. The English Wikipedia contains explanations of various concepts, and is
usually considered to be of a good quality, making it an appropriate external resource. The merged external
collection consists of 3,445,344 documents, which is approximately twice as large as the WT10G collection,
while being much smaller than the .GOV2 collection. As stressed in Kwok and Chan (1998), a relatively large
collection is more likely to contain more relevant documents. In other words, if the external collection is much
smaller than the local collection, it is unlikely to have a positive impact on the query expansion’s performance.
Hence we expect the adaptive query expansion mechanism to improve the retrieval performance on WT10G,
while having little impact on the large-scale .GOV2 collection.

For the optimisation of the threshold setting of the adaptive query expansion mechanism, we do a data
sweeping in the range of [10, 27] with an interval of 1. For all TREC topics used, the AvICTF values on both
local and external collections are within this range. We choose the threshold setting that gives the best mean
average precision (MAP) on the test topics using relevance assessments.

Our baseline is the best performing query expansion on fields using either the local collection (QEF) or the
external collection (ExQEF). This allows us to assess whether the adaptive query expansion mechanism has
the potential for further improvement of the retrieval performance based on our query expansion mechanism
on fields. Section 3.3, for comparison purposes, we compare the performance of our adaptive query expansion
with the performance achieved by the best TREC submitted title-only runs on a per-task basis.
4.2.2. Experimental results

Table 5 presents the evaluation results. The p-value is computed by the sign test, which indicates if the
adaptive query expansion mechanism provides a positive improvement, compared with the baseline, for a sta-
tistically significant number of queries.

On the WT10G collection (see row WT10G in Table 5), we observe a 4.47% statistically significant
improvement on the baseline. The optimal threshold setting is AvICTF = 10. The adaptive query expansion
mechanism applies the local query expansion for 59 queries, and the external query expansion for 41 queries. It
does not disable query expansion for any query. The performance of the adaptive query expansion is better
than expanding all the queries locally or externally, which indicates that our adaptive query expansion mech-
anism successfully selects the appropriate collection resource for query expansion. The adaptive query expan-
sion mechanism makes the correct decision for 81 out of 100 queries. The sign test shows that the mechanism
makes the correct decisions for a statistically significant number of queries at the 0.05 level.

However, for the large-scale .GOV2 collection, we do not observe an improvement using the adaptive query
expansion mechanism. It results in the best MAP when the local query expansion is applied for all the queries.
4 Related information can be found from http://www-nlpir.nist.gov/trec/data/docs_eng.html.
5 Related information can be found from http://en.wikipedia.org/wiki/Main_Page.

http://www-nlpir.nist.gov/trec/data/docs_eng.html
http://en.wikipedia.org/wiki/Main_Page
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We suggest that this is because the .GOV2 collection is so large that the used external resource cannot render
more relevant documents and better collection statistics for query term reweighting. This is consistent with the
suggestion in Kwok and Chan (1998), and our expectation in Section 4.2.1.

In summary, our adaptive query expansion is shown to be effective when the external collection is larger
than the local collection. Our adaptive query expansion mechanism is shown to have the potential to further
improve the retrieval performance based on the query expansion mechanism on fields. However, the experi-
mental results suggest not to apply collection enrichment if the external collection is much smaller than the
local one. Further research is required to study whether a huge collection, such as the Web, would benefit from
the adaptive query expansion mechanism. In particular, the choice of the external collection may change the
performance, whatever the size of the local collection.
5. Experiments with BM25F

In this section, we conduct experiments with the BM25F model to see the impact of using a different doc-
ument weighting model on the proposed query expansion techniques. In the query expansion mechanism on
fields and the adaptive query expansion, we replace DLHF with BM25F for both the first-pass retrieval and
the retrieval using the expanded query. The experimental settings, including the collections, topics, and the
term weighting model (i.e. Bo1F) used, are the same as in Sections 3.3.1 and 4.2.1.

Using BM25F, we need to optimise five parameters, which are the hyper-parameter bf for the three fields
(see Eq. (2)) and the weights of anchor text (wa) and title (wt) fields. To optimise the hyper-parameter bf, for
each field f, we set wf to 1 and the weights of the other two fields to 0. Then, we choose the bf value that gives
the best mean average precision (MAP) on the test topics in a data sweeping within [0,1] with an interval of
0.05. The optimal bf values are given in Table 6. When the hyper-parameters bf of all the three fields are opti-
mised, we perform a two-dimensional data sweeping to optimise wa and wt in [0,2] with an interval of 0.1. If
the optimal weights are not found in this range, we increase the upper bound of the range. Again, we choose
the weights that give the best MAP on the test topics.

Using BM25F, Table 7 compares the performance between our query expansion mechanism on fields and
the content-based query expansion (i.e. the baseline). Compared with the baseline, we observe a statistically
Table 6
The optimised values of the parameter bf of BM25F for the body (bbody), anchor (banchor), and title (btitle) fields

TREC bbody banchor btitle

TREC 9 0.20 1 0.25
TREC 10 0.40 0.85 0.30
Merged 0.30 0.95 0.30

TREC 13 0.40 0.70 0.25
TREC 14 0.40 1.00 0.40
Merged 0.40 0.70 0.35

Table 7
The mean average precision obtained by the content-based query expansion (QE) and by our query expansion mechanism on fields (QEF),
respectively

TREC QE QEF wa wt D% p-Value + � =

TREC 9 0.2192 0.2368 0.1 1.1 +8.03 1.114e � 06* 40 5 5
TREC 10 0.2431 0.2475 0.2 0.7 +1.40 3.623e � 04* 36 11 3
Merged 0.2311 0.2368 0.0 1.0 +2.34 4.708e � 09* 79 12 9

TREC 13 0.2715 0.2840 0.3 5.0 +4.60 0.09255 29 19 2
TREC 14 0.3620 0.3709 0.2 2.7 +2.46 0.0672 30 19 1
Merged 0.3172 0.3234 0.5 0.5 +1.95 0.7147 49 46 5

wa and wt are the optimal weights of anchor text and title, respectively. The p-value is given by the Wilcoxon matched-pairs signed-ranks
test. A star indicates a statistically significant difference at 0.05 level. +, �, and = indicate for how many queries QEF results in
improvement, degradation and no change in the retrieval performance, respectively.



Table 8
The mean average precision obtained by the content-based query expansion (QE) and by our query expansion mechanism on fields (QEF),
respectively

TREC QE QEF D% p-Value

TREC 9 0.2263 0.2329 +2.92 0.1583
TREC 10 0.2370 0.2405 +1.48 0.6407

TREC 13 0.2715 0.2855 +5.16 0.0105*

TREC 14 0.3620 0.3666 +1.27 0.2444

wa and wt are the optimal weights of anchor text and title, respectively. The p-value is given by the Wilcoxon matched-pairs signed-ranks
test. A star indicates a statistically significant difference at 0.05 level.

Table 9
The obtained mean average precision (MAP) using BM25F for the evaluation of the adaptive query expansion mechanism

Coll. QEF ExQEF AdapQEF D% p-Value

WT10G 0.2376 0.2374 0.2460 +3.54 6.15e � 11*

.GOV2 0.3251 0.3191 0.3251 0 –

The notations in this table are the same as in Table 5.
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significant improvement on the WT10G collection. However, on .GOV2, unlike the obtained results using
DLHF (Table 3), we do not observe a significant improvement using BM25F. Moreover, it seems that using
BM25F, it is necessary to give higher weights to the anchor text and title fields. In particular, the optimal
weight of the title (wt) field is much larger than that of DLHF (see columns wt in Tables 3 and 7).

Table 8 contains the evaluation results of a two-fold holdout evaluation, which uses half of the test queries
for training, and the other half for testing. From the results, we find that the query expansion mechanism on
fields outperforms the baseline in all the four cases. However, the difference between the obtained MAPs are
statistically significant in only one case (see the p-value with a star in Table 8). Overall, compared with our
experimental results using DLHF in Section 3.3.2, we find that BM25F leads to a relatively small improvement
in the retrieval performance, brought by the query expansion mechanism on fields. This may be due to the fact
that BM25F employs a per-field normalisation component, while DLHF does not have a term frequency nor-
malisation component. Consequently, in BM25F, the field evidence is more exploited than in DLHF, which
results in a better retrieval performance of the baseline.

Table 9 evaluates the adaptive query expansion mechanism using BM25F. From the table, we have similar
observations with those obtained using DLHF. Again, we obtain a significant improvement on WT10G, but
not on the large-scale .GOV2 collection.

In summary, for the query expansion mechanism on fields, BM25F seems to give more importance to the
anchor text and title fields than DLHF. The optimal weights of these two fields are much larger than those of
DLHF. Moreover, using BM25F, the adaptive query expansion mechanism improves the retrieval perfor-
mance on WT10G, but not on the large-scale .GOV2 collection, which is similar with what we obtained using
DLHF. Overall, the proposed query expansion techniques can achieve an improvement on the baselines using
both document weighting models, although the improvement depends on the collections used.
6. Conclusions and future work

In this paper, we have improved query expansion by combining evidence from different fields. We suggest
that the performance of query expansion is related not only to the quality of the top-ranked documents, but
also to the quality of the reweighting of the query terms. Therefore, combining field evidence can refine the
statistics for query term reweighting, and improve query expansion. The proposed query expansion mecha-
nism on fields is evaluated on two standard TREC Web collections, namely WT10G and the large-scale
.GOV2 collection. The experiments are conducted using two different document weighting models, namely
DLHF and BM25F. The evaluation results show that our query expansion mechanism on fields has achieved
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a significant retrieval performance improvement compared with the content-based query expansion, except
when using BM25F on WT10G, where its performance is comparable with the content-based query expansion.
Also, we have shown that the proposed query expansion mechanism on fields has a good potential for enhanc-
ing the retrieval performance, and can outperform the best official TREC runs, if the weights of the fields are
properly set.

Moreover, we have devised an adaptive query expansion mechanism that automatically selects the appro-
priate collection resource for query expansion. The proposed adaptive mechanism applies query performance
prediction, selective query expansion, and collection enrichment techniques. In our experiments, we observe
that the performance of the adaptive query expansion mechanism depends on the relative size of the external
collection. This is consistent with the suggestion in Kwok and Chan (1998). In addition, on the WT10G col-
lection, the adaptive query expansion mechanism gives consistent retrieval performance improvement, regard-
less of the document weighting model used.

In the future, we aim to further investigate the adaptive query expansion mechanism on very large-scale
collections and using various external collections. For example, for .GOV2, we can use the SPIRIT collection
(Joho & Sanderson, 2004) as an external resource for query expansion. The SPIRIT collection contains
94,552,870 documents and is approximately four times larger than the .GOV2 collection.

Moreover, this paper has focused on showing that query expansion on fields is beneficial and has a consid-
erable potential for improving the retrieval performance. On the other hand, the setting of the fields’ weights is
crucial to the retrieval performance of the proposed query expansion techniques. For example, BM25F and
DLHF require different optimal weights for the anchor text and title fields. Moreover, for the same document
weighting model, the optimal weights are different on the two collections used. In the future, we plan to inves-
tigate a method for automatically setting the weights of the fields without assuming that the relevance assess-
ments are readily available. This allows the proposed techniques to be used in an operational setting, where
little relevance information is available.

Finally, in our experiments, we found that the effectiveness of the adaptive query expansion mechanism
depends on the size of the external collection used for query expansion. In the future, we plan to study possible
reasons that explain this finding. For example, a large external collection may contain more relevant docu-
ments, or may have a better global statistics than the local collection, which improves the query term reweigh-
ting process.
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