Analysis of Link Graph Compression Techniques

David Hannah, Craig Macdonald, and Iadh Ounis

Department of Computing Science,
University of Glasgow, G12 8QQ, UK
{hannahd, craigm,ounis}@dcs.gla.ac.uk

Abstract. Links between documents have been shown to be useful in
various Information Retrieval (IR) tasks - for example, Google has been
telling us for many years now that the PageRank authority measure is
at the heart of its relevance calculations. To use such link analysis tech-
niques in a search engine, special tools are required to store the link
matrix of the collection of documents, due to the high number of links
typically involved. This work is concerned with the application of com-
pression to the link graph. We compare several techniques of compress-
ing link graphs, and conclude on speed and space metrics, using various
standard IR test collections.

1 Introduction

The retrieval performance of many Information Retrieval (IR) systems can be
benefited by the application of techniques based on the structure of links between
documents, such as PageRank [I] (famously applied by Google), and Hypertext
Induced Topic Selection (HITS) [2]. To calculate such link analysis techniques,
it is necessary to have a matrix of the links between all documents in the collec-
tion. However, due to the large nature of such a matrix, it would be impossible
to work with it wholly stored in memory. As such, a disk-based structure is re-
quired, known as a link database. In particular, a link database stores, for each
document, a list of the incoming (or outgoing) links to (from) the documents. In
a typical collection of Web documents, there is typically an order of magnitude
more links than documents, and the number of incoming links to a document
follows a power-law distribution. To quickly and easily compute the various link
graph-based query independent features, it is necessary that the Web search
engine has timely and efficient access to the link graph.

This paper investigates the use of various state-of-the-art compression tech-
niques, and how they can be applied to the compression of a link graph. We
experiment with six recent large Web IR test collections, such as those used in
TREC and the very large UK-2006 collection, and conclude on the most efficient
representation for the link graph. While these compression techniques have been
proposed in literature, they have never been studied extensively in terms of both
time and space efficiency, and over as many test collections, of various age, size
and domain, and using exactly the same experimental setting.

C. Macdonald et al. (Eds.): ECIR 2008, LNCS 4956, pp. 596 2008.
© Springer-Verlag Berlin Heidelberg 2008

Analysis of Link Graph Compression Techniques 597

Number of Links — I3, l2, I3, ... Number of Links — 1 — 1,12 — l1, I3 — l2, ...
(a) No Encoding (b) Gamma Encoding

Number of Links — Number of Intervals, int; : intLengi, ints : intLena,... r1 — 1,79 — 71,...
(c) Interval Encoding

Fig. 1. Encoding techniques applied for compressing the link database

2 Link Graph Compression

For the state-of-the-art link graph compression techniques, we base our work on
that of Boldi & Vigna [3], who detail various compression techniques for link
graphs. Firstly, it is assumed that all documents in the collection have a numeri-
cal integer document identifier (document id). We then store for each document,
the document ids of each of its incoming links, which we denote inlinks. More-
over, we can without loss, describe the transpose of the inlinks matrix, which we
denote outlinks. We experiment with three techniques for compression:

No Encoding: (Fig. 1(a)) A vector that contains the number of links of each
document together with pointers to the offset in a second file of the document ids
for the links to (from) that document. Links are encoded using 32 bit integers.

Gamma Encoding: (Fig. 1(b)) Again, a vector containing the number of links
for each document and a pointer into another file containing the links. However,
the links are stored as the differences between the doc id of each link and the
previous, written using ‘Elias gamma encoding’. To gamma encode a number, it
is first written in binary, then a number of zeros (the number of bits required
to write the number minus one) is prepended to the number [5]. It follows that
each link can take a variable number of bits to encoddl.

Interval Encoding: (Fig. 1(c)) This technique is similar to Gamma Encoding
except that it encodes intervals of links. This is based on the intuition that if
the documents ids in a collection are stored in lexicographical order of URL,
then there will be common ‘runs’ of links to documents with adjacent document
ids. For this compression style, the number of intervals are stored as a gamma
encoded integer. Then each intervals of links is stored as the left extreme and the
length of the run - again using gamma encoding. Finally, the extra links which
are not consecutive are stored using gamma encoding as before. Intervals of less
than Ly, are not encoded.

Tt is of note that in [3], Boldi & Vigna describe a further compression technique
(Reference Encoding), whereby the links for a document are encoded by stating
how much it has in common with the links of the previous few documents,
iteratively applied. For reasons of brevity, we leave this technique as future
work.

! Tn contrast to [3], we encode the first link as document id 4 1, to ensure uniformity
with existing compression used Terrier, the platform on which this work is performed.
However this change does not affect any experimental conclusions.

598 D. Hannah, C. Macdonald, and I. Ounis

3 Experimental Design

To analyse the effectiveness of the various compression techniques, we use six
different Web IR test collections, related to different domains and timescales.
In particular, the collections we experiment with are: two older TREC Web
test collections WT2G and WT10G, which are small-scale general Web crawls
from early 1997; .GOV and .GOV2 are more recent TREC Web test collections,
both of which are crawls of the .gov domain from 2002 and 2003 respectively -
.GOV2 being the largest TREC collection at 25M documents; the TREC CERC
collection which is a crawl of the CSIRO website from early 2007; and finally
the UK-2006 collection is a large crawl of the .uk domain from 20062.

For our experiments, we apply Web IR techniques deployed in the Terrier
platform [6]. To assess the efficiency of the link database compression methods,
we record various metrics for each collection: Firstly, we record the time taken
to build the compressed copies of the incoming and outgoing link graphs; Sec-
ondly, we record the time taken to compute the PageRank prior using the link
database. This is motivated by the fact that the PageRank computation is a
realistic application for a link database. However as the PageRank calculation
can take many iterations to converge, we normalise the times by the number of
iterations to account for the different sizes of collections; Lastly, we record the
space required to store the link graph, in terms of the mean number of bits of
space required per link. From these metrics, we can conclude in terms of the
time to write and read each of the link database compression techniques, as well
as their space requirements. Note that we vary the parameter Lmin of interval
encoding.

4 Results and Analysis

Table[l presents the compression level achieved for the inlinks and outlinks tables
of the link databases, in terms of mean number of bits per links - the lower the
number of bits required per link, the better compression achieved. Observe that,
as expected, the No Encoding technique has a stable usage of 32 bits per link.
Applying Gamma FEncoding on the same link graphs produce a markedly
better level of compression (as low as 4.07 bits per link for the inlinks of the
UK-2006 collection, which is similar to that reported by Boldi & Vigna in [4] for
their smaller sample of .uk). On the unsorted collections, Interval Encoding has
comparable but not as good compression as Gamma Encoding. Increasing the
Lmin parameter generally improves the compression of the Interval Encoding.
Interestingly, similar to that reported by [3], inlinks compresses better than
outlinks for most collections, except the domain specific .GOV and .GOV2. On
comparing compression techniques across collections, we note that, for inlinks,
the collections with the highest number of links per document (i.e. UK-2006 and
CERC) exhibit the highest compression, while the older WT2G and WT10G are

2 More information about obtaining the UK-2006 collection is found at http: //www.
yr-bcn.es/webspam/datasets/

http://www.yr-bcn.es/webspam/datasets/
http://www.yr-bcn.es/webspam/datasets/

Analysis of Link Graph Compression Techniques 599

Table 1. Comparative compression (bits per link) on Web IR collections. Sorted de-
notes when the document ids are ordered lexicographically by URL. NB: UK-2006 and
CERC collections are initially numbered this way.

Links Unsorted Sorted
No Gamma Interval Gamma Interval
Lmin = 2 3 4 5 2 3 4 5

WT2G (247,491 Docs, 1,166,146 Links)
out 32 8.95 11.87 10.69 10.16 9.91 10.32 13.22 11.48 10.96 10.76

in 32 8.75 9.70 9.37 9.21 10.38 8.28 10.04 9.18 8.85 8.68
CERC (370,715 Docs, 4,577,312 Links)

out 32 - - - - - 11.67 14.53 13.30 12.65 12.33

in 32 - - - - 5.26 6.08 5.21 6.06 4.99

.GOV (1,247,753 Docs, 11,110,989 Links)
out 32 18.68 19.97 19.19 18.97 18.91 7.87 9.76 8.96 8.65 8.45
in 32 22.68 22.85 22.89 22.89 22.80 11.78 15.67 13.32 12.61 12.34
WT10G (1,692,096 Docs, 8,063,026 Links)
out 32 14.28 15.51 14.74 14.60 14.55 11.75 15.34 13.33 12.67 12.32
in 32 13.86 15.20 14.36 14.22 14.16 10.05 12.09 11.22 10.88 10.58
.GOV2 (25,205,179 Docs, 261,937,150 Links)
out 32 20.72 21.51 20.09 20.83 20.81 21.16 23.51 22.04 21.64 21.47

in 32 30.87 31.09 30.90 30.94 30.93 35.14 35.38 35.24 35.22 35.22
UK-2006 (77,741,020 Docs, 2,951,370,103 Links)

out 32 - - - - - 9.36 12.53 10.61 10.06 9.79

in 32 - - - - - 4.07 5.13 4.32 4.07 3.92

generally worse. It is also of note that in the UK-2006 and CERC collection, the
document ids are sorted lexicographically by URL, as recommended in [3], and by
increasing Lmin to 5 on these collections, Interval Encoding can achieve higher
compression than Gamma encoding. To assess the best compression achievable
for the other unsorted Web test collections, we renumber the documents to match
the lexicographical order of the URLs, then rebuild the link databases.

On analysing the compression between the unsorted and sorted collections, we
note that sorting increases the compression achieved for the WT10G and .GOV
collection, as well as for the inlinks of the WT2G collection. For the .GOV2
collection, the compression level decreases, and for the inlinks, both Gamma
Encoding and Interval Encoding result is less effective compression than the
No Encoding technique. We suggest this is due to a combination of low overall
linkage combined with high document ids.

Figure 2(a) plots the build time of the three forms of link database compres-
sion across the 6 collections applied. Moreover, Figure 2(b) plots the mean time
to perform one iteration of PageRank calculation (Note that due to computa-
tional reasons, the PageRank for UK-2006 collection was not computed.). From
the figures, we can see that the No Encoding technique takes the longest to
write and read, even though this is a simpler technique compared to the Gamma
and Interval encoding techniques. We believe that this is due to the markedly

600 D. Hannah, C. Macdonald, and I. Ounis

16408

100000

~
e
/‘
o Gov2
UK-2006

10000 -

100000 -

1000 |

Time to Build Link Database (ms)

Mean Time to Compute one Page Rank Iteration (s)

7 WT10G
10000 -
CERC
WT2G
1000 L L /
100000 1e+06 1e+07 1e+08 100 L L
R Socen O e
(a) Time to build the link database, for (b) Time to compute PageRank, for the
the various tested collections. various tested collections.

Fig. 2. Timing plots for writing and reading the various link databases (natural col-
lection ordering)

higher number of disk operations required by this technique. Noticeably, the
speeds of the Gamma and Interval encoding techniques are equivalent for both
read and write operations, reflecting the very similar compression they achieve.
Overall, the Gamma and Interval encodings are approximately 3-4 times faster
to compress, and 1.5 times faster to decompress.

5 Conclusions

In this work, we thoroughly analysed three techniques for compressing the link
graph of six different samples of the Web, of various size. We found that the
simple integer (No Encoding) technique suffered from excessive Input/Output
overheads. The Gamma Encoding gave best overall compression, and was among
the fastest at reading and writing. The Interval Encoding technique does exhibit
the high compression promised in [4], but requires an appropriate setting of the
Lmin parameter. Overall, we conclude that the Gamma Encoding technique,
similar to that already used by Terrier for direct and inverted file compression [6],
should be deployed for link graph compression.

The large-scale analysis in this work is important as while more effective
compression of the link graph may be obtained by the suitable ordering of the
document ids in a collection, this ordering may not be compatible with other
document id orderings applied by the underlying search engine - for example,
some search engine number documents ids by ascending PageRank, or by natural
crawl order (which approximates high quality pages first). Another interest of
this study is that some conclusions - for instance URL ordering improving com-
pression - do not necessarily generalise to all collections. Moreover, the speed
increases shown by applying the compression techniques would benefit a large
commercial search engine by allowing less machines to be involved in the com-
putation of PageRank, resulting in data centre power and equipment savings.

Analysis of Link Graph Compression Techniques 601

References

1. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the Web. Technical report, Stanford Digital Library Technologies
Project (1998)

2. Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46(5),
604-632 (1999)

3. Boldi, P., Vigna, S.: The WebGraph Framework I: compression techniques. In: Pro-
ceedings of WWW 2004, pp. 595-602 (2004)

4. Boldi, P., Vigna, S.: The WebGraph Framework II: Codes for the WWW. Technical
Report 294-03, Universit di Milano (2003)

5. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21(2), 194-203 (1975)

6. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A
high performance and scalable IR platform. In: Proceedings of SIGIR OSIR Work-
shop, pp. 18-25 (2006)

	Analysis of Link Graph Compression Techniques
	Introduction
	Link Graph Compression
	Experimental Design
	Results and Analysis
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

